首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Simulations of a late lunar-forming impact   总被引:3,自引:0,他引:3  
Robin M. Canup 《Icarus》2004,168(2):433-456
Results of about 100 hydrodynamic simulations of potential Moon-forming impacts are presented, focusing on the “late impact” scenario in which the lunar forming impact occurs near the very end of Earth's accretion (Canup and Asphaug, 2001, Nature 412, 708-712). A new equation of state is utilized that includes a treatment of molecular vapor (“M-ANEOS”; Melosh, 2000, in: Proc. Lunar Planet. Sci. Conf. 31st, p. 1903). The sensitivity of impact outcome to collision conditions is assessed, in particular how the mass, angular momentum, composition and origin (target vs. impactor) of the material placed into circumterrestrial orbit vary with impact angle, speed, impactor-to-target mass ratio, and initial thermal state of the colliding objects. The most favorable conditions for producing a sufficiently massive and iron-depleted protolunar disk involve collisions with an impact angle near 45 degrees and an impactor velocity at infinity <4 km/sec. For a total mass and angular momentum near to that of the current Earth-Moon system, such impacts typically place about a lunar mass of material into orbits exterior to the Roche limit, with the orbiting material composed of 10 to 30% vapor by mass. In all cases, the vast majority of the orbiting material originates from the impactor, consistent with previous findings. By mapping the end fate (escaping, orbiting, or in the planet) of each particle and the peak temperature it experiences during the impact onto the figure of the initial objects, it is shown that in the successful collisions, the impactor material that ends up in orbit is primarily that portion of the object that was heated the least, having avoided direct collision with the Earth. Using these and previous results as a guide, a continuous suite of impact conditions intermediate to the “late impact” (Canup and Asphaug, 2001, Nature 412, 708-712) and “early Earth” (Cameron, 2000, in: Canup, R.M., Righter, K. (Eds.), Origin of the Earth and Moon, pp. 133-144; 2001, Meteorit. Planet. Sci. 36, 9-22) scenarios is identified that should also produce iron-poor, ∼lunar-sized satellites and a system angular momentum similar to that of the Earth-Moon system. Among these, those that leave the Earth >95% accreted after the Moon-forming impact are favored here, implying a giant impactor mass between 0.11 and 0.14 Earth masses.  相似文献   

2.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

3.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   

4.
The theory of viscous accretion disks developed by Lynden-Bell and Pringle has been applied to the evolution of the primitive solar nebula. The additional physical input needed to determine the structure of the disk is described. A series of calculations was carried out using a steady flow approximation to explore the effects on the disk properties of variations in such parameters as the angular momentum and accretion rate of the infalling material from a collapsing interstellar cloud fragment. The more detailed evolutionary calculations involved five cases with various combinations of parameters. It was concluded that the late stages of evolution of the disks would be dominated by the effects of mass loss from the expansion of a hot disk corona into space, and the effects of this were included in the evolutionary calculations. A new theory of comet formation is formulated upon these results. The most important result is the conclusion, which appears to be inescapable, that the primitive solar accretion disk was repeatedly unstable against axisymmetric perturbations, in which rings would form and collapse upon themselves, with the subsequent formation of giant gaseous protoplanets.  相似文献   

5.
V. P. Grinin 《Astrophysics》2000,43(4):446-457
A young binary system is considered, having a mass ratio of components M 2/M 1 1, in which the low-velocity part of the stellar wind of the low-mass component (the so-called disk wind) can be partially captured by the gravitation of the primary component. It is shown that a large-scale redistribution of matter and angular momentum between the inner and outer parts of the gas-dust disk surrounding the binary system occurs as a result, with a consequent increase in the rate of accretion onto the primary component. In cases in which the orbital eccentricity of the secondary component is nonzero, modulation of the rate of accretion onto the primary component should be observed with a period equal to the orbital period, while in the case of a highly elongated orbit the mass accretion acquires a pulsed character. Since dust may be present in the disk wind from the secondary component, the capture of stellar wind will result in an increase in the effective geometrical thickness of the gas-dust disk. For this reason, the infrared (IR) emission excesses of such stars (especially in the near-IR range) and their intrinsic polarization can be considerably greater than in the case of a single star surrounded by a circumstellar disk of the same mass, and a periodic component may also be present in their behavior with time. Moreover, because of disruption of the axial symmetry in the dust distribution in the vicinity of the young binary system, the orbital period may also be present in its brightness variations. The role of these effects in the physics of young stars is discussed.  相似文献   

6.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

7.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

8.
Robert A. Craddock 《Icarus》2011,211(2):1150-1161
Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth–Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350–354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.  相似文献   

9.
Embryos of the Moon and the Earth may have formed as a result of contraction of a common parental rarefied condensation. The required angular momentum of this condensation could largely be acquired in a collision of two rarefied condensations producing the parental condensation. With the subsequent growth of embryos of the Moon and the Earth taken into account, the total mass of as-formed embryos needed to reach the current angular momentum of the Earth–Moon system could be below 0.01 of the Earth mass. For the low lunar iron abundance to be reproduced with the growth of originally iron-depleted embryos of the Moon and the Earth just by the accretion of planetesimals, the mass of the lunar embryo should have increased by a factor of 1.3 at the most. The maximum increase in the mass of the Earth embryo due to the accumulation of planetesimals in a gas-free medium is then threefold, and the current terrestrial iron abundance is not attained. If the embryos are assumed to have grown just by accumulating solid planetesimals (without the ejection of matter from the embryos), it is hard to reproduce the current lunar and terrestrial iron abundances at any initial abundance in the embryos. For the current lunar iron abundance to be reproduced, the amount of matter ejected from the Earth embryo and infalling onto the Moon embryo should have been an order of magnitude larger than the sum of the overall mass of planetesimals infalling directly on the Moon embryo and the initial mass of the Moon embryo, which had formed from the parental condensation, if the original embryo had the same iron abundance as the planetesimals. The greater part of matter incorporated into the Moon embryo could be ejected from the Earth in its multiple collisions with planetesimals (and smaller bodies).  相似文献   

10.
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/r ? 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.  相似文献   

11.
We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit about a 1 M star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the number of bodies, we still track in excess of 105 particles. We consider three initial velocity distributions and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity dispersion of the particles, suggesting impending runaway growth, although no particle grows large enough to detach itself from the power law size-frequency distribution. These results are in general agreement with previous statistical and analytical results. We compute rotation rates by assuming conservation of angular momentum around the center of mass at impact and that merged planetesimals relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at least one merger are rotating faster than the breakup frequency. This implies that the assumption of completely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in neighboring regions of the disk may limit the validity of simulations employing the patch approximation.  相似文献   

12.
The problem of angular-momentum and mass transport in the disk is discussed and the disk viscosity is estimated. The evolution of the gas-dust protoplanetary disk at the stage of its formation inside the protostellar (protosolar) accretion envelope is considered. The conditions for the radial growth of the disk are estimated. For the subsequent period, when the central star (young Sun) is in the T Tauri phase, the temporal variations of the radius, mass, and the surface density of the disk, as well as the total mass flux from the disk onto the star (Sun), i.e., the mass accretion rate, are evaluated. The constraints on the initial value of the angular momentum of the protoplanetary circumsolar disk (that is, on the angular momentum of the protosolar cloud) are discussed with due regard for cosmochemical data.Translated from Astronomicheskii Vestnik, Vol. 38, No. 6, 2004, pp. 559–576.Original Russian Text Copyright © 2004 by Makalkin.  相似文献   

13.
本文详细讨论了在Blandford-Znajek过程中吸积盘中心黑洞的角动量和质量的总变化率与质量吸积率和能量提取率之比的关系,在此基础上讨论了BlandfordZnajek过程对黑洞吸积盘内边缘半径r_(ms)演化的影响,并证明在此过程中中心黑洞的熵总是增大的。  相似文献   

14.
黑洞吸积的双模式特征   总被引:1,自引:0,他引:1  
黑洞吸积必定是跨声速的。对于静态、绝热吸积流,比能量E、比角动量L和质量吸积率M都是空间的常量。跨声速解的非奇异条件,F(E,L,M)=0,使独立参数减为只有两个。对于一对给定的E和L的符合条件E_c>E>E_(Barr)的值(这里E_c是一临界值,E_(Barr)是引力和离心力的联合势垒),上述非奇异条件给出两个不同的吸积率值,对应着两个不同的吸积流声速点位置。然而,物理上合理的整体解却是唯一的,它总是使两个吸积率值中之较小者得到实现。 对于一个不转动的黑洞,吸积以两种模式之一进行。一是类球吸积或称Bondi吸积,角动量的影响和相对论效应均微不足道;另一是盘吸积,这两个因素起决定性作用。两种模式之间的转换是基于声速点位置的间断性跳跃,而这种跳跃是由吸积流参数(例如角动量)的连续变化所引发。Bondi吸积可称为高态而盘吸积为低态,因为前者总对应着较高的吸积率。 随时间变化的吸积流很可能在这两种模式之间来回振荡,呈现出周期性或准周期性或无规则行为。这可以用来解释天鹅座X-1和若干活动星系核的光变现象,从而为黑洞的存在提供有力的观测依据。  相似文献   

15.
The total energy E of a star as a function of its angular momentum J and mass M in the Newtonian theory, E=E(J, M) [in general relativity, the gravitational mass of a star as a function of its angular momentum J and rest mass m, M=M(J, m)], is used to determine the remaining parameters (angular velocity, chemical potential, etc.) in the case of rigid rotation. Expressions are derived for the energy release during accretion onto a cool (with constant entropy), rapidly rotating neutron star (NS) in the Newtonian theory and in general relativity. A separate analysis is performed for the cases where the NS equatorial radius is larger and smaller than the radius of the marginally stable orbit in the disk plane. An approximate formula is proposed for the NS equatorial radius for an arbitrary equation of state, which matches the exact equation of state at J=0.  相似文献   

16.
The importance of thermal conduction on hot accretion flow is confirmed by observations of hot gas that surrounds Sgr A? and a few other nearby galactic nuclei. On the other hand, the existence of outflow in accretion flows is confirmed by observations and magnetohydrodynamic (MHD) simulations. In this research, we study the influence of both thermal conduction and outflow on hot accretion flows with ordered magnetic field. Since the inner regions of hot accretion flows are, in many cases, collisionless with an electron mean free path due to Coulomb collision larger than the radius, we use a saturated form of thermal conduction, as is appropriate for weakly collisional systems. We also consider the influence of outflow on accretion flow as a sink for mass, and the radial and the angular momentum, and energy taken away from or deposited into the inflow by outflow. The magnetic field is assumed to have a toroidal component and a vertical component as well as a stochastic component. We use a radially self-similar method to solve the integrated equations that govern the behavior of such accretion flows. The solutions show that with an ordered magnetic field, both the surface density and the sound speed decrease, while the radial and angular velocities increase. We found that a hot accretion flow with thermal conduction rotates more quickly and accretes more slowly than that without thermal conduction. Moreover, thermal conduction reduces the influences of the ordered magnetic field on the angular velocities and the sound speed. The study of this model with the magnitude of outflow parameters implies that the gas temperature decreases due to mass, angular momentum, and energy loss. This property of outflow decreases for high thermal conduction.  相似文献   

17.
黑洞的吸积是天体物理学中最重要的基础理论之一。近年来该理论取得了引人瞩目的重大进展,具体表现在两个方面。其一是根据黑洞吸积必定跨声速这一特性,提出在一定条件下吸积流中会出现激波,这可称为含激波的吸积理论;其二是基于对一种局域致冷机制-贮导(advection)致冷的作用的重新认识而建立的,称为ADAF理论。在吸积盘的光学厚度很小或很大两种情况下,粘滞产生的大部分热量没有像在标准薄盘模型中那样辐射出去,而是贮存在流体中随流体的径向运动进入黑洞。与标准薄盘模型相比,贮导吸积盘具有高得多的温度和大得多的径向速度,但角动量小于开普勒角动量,吸积致能的效率要低得多。  相似文献   

18.
We follow the premise that most intermediate luminosity optical transients(ILOTs) are powered by rapid mass accretion onto a main sequence star,and study the effects of jets launched by an accretion disk.The disk is formed due to large specific angular momentum of the accreted mass.The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk,and therefore reduce and shorten the mass accretion process.We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism(JFM).The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.  相似文献   

19.
Though the Moon is considered to have been formed by the so-called giant impact, the mass of the Earth immediately after the impact is still controversial. If the Moon was formed during the Earth's accretion, a subsequent accretion of residual heliocentric planetesimals onto the protoearth and the protomoon must have occurred. In this co-accretion stage, a significant amount of lunar-impact-ejecta would be ejected to circumterrestrial orbits, since the mean impact velocity of the planetesimals with the protomoon is much larger than the escape velocity of the protomoon. Orbital calculations of test particles ejected from the protomoon, whose semimajor axis is smaller than that of the present Moon, reveal that most of the particles escaping from the protomoon also escape from the Hill sphere of the protoearth and reduce the planetocentric angular momentum of the primordial Earth-Moon system. Using the results of the ejecta simulations, we investigate the evolution of the mass ratio and the total angular momentum (Earth's spin angular momentum + Moon's orbital angular momentum) of the Earth-Moon system during the co-accretion. We find that the mass of the protomoon is almost constant or rather decreases and the total angular momentum decreases significantly, if the random velocity of planetesimals is as large as the escape velocity of the protoearth. On the other hand, if the random velocity is the half of the escape velocity of the protoearth, the mass ratio is kept to be almost as large as the present value and the decrease of the total angular momentum is not so significant. Comparing with the results of giant impact simulations, we find that the mass of the protoearth immediately after the Moon-forming impact was 0.7-0.8 times the present value if the impactor-to-target mass ratio was 3:7, whereas the giant impact occurred almost in the end of the Earth's accretion if the impactor-to-target mass ratio was 1:9.  相似文献   

20.
The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths consistent with an important Poynting Flux component. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号