首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
Maximum possible acceleration due to out-gassing from cometary nuclei is calculated for H2O and CO(N2) molecules. It is found that the maximum excess velocity at great distance is 0.18 km s–1 so that excess velocities less than this value are compatible with the non-gravitational acceleration due to non-symmetric out-gassing. On the other hand, Comet 1975q and comet 1955V have excess velocities 0.81 and 0.80 km s–1 respectively. These comets may be regarded as the candidates for possible interstellar comets.  相似文献   

2.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

3.
Data on thermophysical properties measured on lunar material returned by Apollo missions are reviewed. In particular, the effects of temperature and interstitial gaseous pressure on thermal conductivity and diffusivity have been studied. For crystalline rocks, breccias and fines, the thermal conductivity and diffusivity decrease as the interstitial gaseous pressure decreases from 1 atm to 10–4T. Below 10–4T, these properties become insensitive to the pressure. At a pressure of 10–4T or below, the thermal conductivity of fines is more temperature dependent than that of crystalline rocks and breccias. The bulk density also affects the thermal conductivity of the fines. An empirical relationship between thermal conductivity, bulk density and temperature derived from the study of terrestrial material is shown to be consistent with the data on lunar samples. Measurement of specific heat shows that, regardless of the differences in mineral composition, crystalline rocks and fines have almost identical specific heat in the temperature range between 100 and 340K. The thermal parameter calculated from thermal conductivity, density and specific heat shows that the thermal properties estimated by earth-based observations are those characteristic only of lunar fines and not of crystalline rocks and breccias. The rate of radioactive heat generation calculated from the content of K, Th and U in lunar samples indicates that the surface layer of the lunar highland is more heat-producing than the lunar maria. This may suggest fundamental differences between the two regions.Now at Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, U.S.A.  相似文献   

4.
The evolution of the different chemical species are followed in a model of contracting interstellar cloud. The central density increases from n = 10 cm–3 diffuse initial cloud model to a dense cloud with central density number of n >- 105 cm–3 after a time of 1.2 × 107 yr. A network of 622 reactions has been involved. The chemistry of the cloud is integrated simultaneously with the hydrodynamic equations of contraction.The results predict that the different molecular species increase in abundance as the contraction proceeds. The species which enhance significantly are CO, HCO, CS and NO. The fractional abundances of many of the other molecular species increase distinctly with contraction, e.g. CH, C2H, CN, SO2, CO2, H2O, C2, NH3, HCN, SO, OCS and SN. The transformation of the initial diffuse cloud model with small abundances of molecular species to a dense molecular cloud with enhancement of the different molecular species is confirmed. The results predict good agreements of our results with both the observations and other theoretical studies.  相似文献   

5.
Physical conditions are found for a hot intercloud gas in the nuclei of Seyfert galaxies. The gas temperature is determined by photoionization and Compton-scattering of the shortwave radiation of the nucleus. Using observational data for the coronal emission line [Fe x] 6374 Å, the gas densityn=104cm–3 and temperatureT=106K, typical for the distance 2 pc from the central source, are obtained. It is shown that the intercloud gas is in the state of accretion by the nucleus with a rateM10–2 M yr–1.  相似文献   

6.
The magnetic fields observed in the galactic disc are generated by the differential rotation and the helical turbulent motions of interstellar gas. On the scalesl=2k –1 which lie in the intervall 0<l<l e (l 0100 pc is the energy-range scale of the galactic turbulence), the spectral density of the kinetic energy of turbulence (k –5/3) exceeds the magnetic energy spectral density (k –1). The equipartition between magnetic and kinetic energies is reached atl=l e 6 pc in the intercloud medium and is maintained down to the scalel=l d 0.03 pc. In dense interstellar cloudsl e is determined by the individual cloud size andl d 0.1 pc.The internal turbulent velocities in Hi clouds (cloud size is assumed to be 10 pc) lie in the range from 1.8 to 5.6km s–1, fitting well within the observed range of internal rms velocities. Dissipation of the interstellar MHD turbulence leads to creation of temperature fluctuations with amplitudes of 150 K and 65 K in dense clouds and intercloud medium, respectively. The small-scale fluctuations observed in the interstellar medium may arise from such perturbations due to the thermal instability, for instance. Dissipation of the MHD turbulence energy provides nearly half of the energy supply needed to maintain the thermal balance of the interstellar medium.  相似文献   

7.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

8.
We have calculated the opacity as resulting from different interstellar grain models, molecules, atoms, and ions. The resulting opacities have been applied to a numerical code used to follow the thermal evolution of a contracting cloud in one dimension. An exact analytical and computational developments of both Mie theory for isolated grains and Güttler's formulae for composite grain models have been used to calculate the extinction coefficients. We have studied two models of composite grain and three models of isolated grain. The opacity of interstellar grains has been calculated in the temperature range 10–1500 K. The molecular opacity is splitted into continuous and line opacities. The different sources of continuous opacity have been studied. The line opacity has also been included. The atomic opacities are also considered. The hydrodynamical equations are solved explicitly but the energy and Poisson equations are solved implicitly.It has been found that the thermal evolution during contraction of protostellar clouds is sensitive to both: the assumed grain models and the considered chemical composition. A cloud of an initial temperature of 10 K collapsed to a stage in which the temperature increases to 91 000 K and the density reached to 0.16 g cm–3.  相似文献   

9.
The physical state of ionized gas in NGC 7793 was studied by spectroscopical means: the electronic temperature isT e104K while the electronic density ranges fromN e1400 cm–3 in the nucleus toN e1000 cm–3 in the emission regions. There are also indications of an excess of nitrogen in the nucleus. TheM/L ratio suggests for NGC 7793, a high proportion of young objects quite uniformly distributed over its body, with a slight concentration towards the nuclear region.  相似文献   

10.
A very low upper limit of 0.15 mÅ for the interstellar 6707 Å Lii line has been recently derived towards the SN1987a by Baade and Magain (1988). This value corresponds toN(Li)<1.4×1011 cm–2 and gives [Li/H]<5.4×10–11 assumingN(Hi)=2.6×1021 cm–2 for the hydrogen column density in the LMC towards SN1987a. This value is lower than the Li abundance found in the Population II stars and lower than the minimum abundance allowed in the framework of the standard Big-Bang theory. We indirectly estimate the Li depletion usingKi observations and show that a depletion of 1.2 dex is plausible. Therefore, an interstellar abundance [Li/H] as high as 0.8×10–9 cannot be excluded. Any improvement in the above-mentioned upper limit will place important constraints on current theories for lithium nucleosynthesis.High-resolution IUE spectra of the SN1987a have been analysed in search for IS 1362 ÅBii resonance lines. A minimum detectable equivalent width of 22 mÅ has been found, that impliesN(B)<1.2×10–12 cm–2 and [B/H]<4.7×10–10 cm–2, i.e., comparable to the solar value of [B/H]=4×10–10. This limit is the most stringent derived so far for an external galaxy, and suggests that the rate of spallation processes in the LMC has not been higher than in our own Galaxy.  相似文献   

11.
Bogod  V. M.  Grebinskij  A. S. 《Solar physics》1997,176(1):67-86
We present here the results of emission tomography studies, based on a new differential deconvolution method (DDM) of Laplace transform inversion, which we use for reconstruction of the coronal emission measure distributions in the quiet Sun, coronal holes and plage areas. Two methods are explored. The first method is based on the deconvolution of radioemission brightness spectra in a wide wavelength range (1 mm–100 cm) for temperature profile reconstructions from the corona to the deeper chromosphere. The second method uses radio brightness measurements in the cm–dm range to give a coronal column emission measure (EM).Our results are based on RATAN-600 observations in the range 2.0–32 cm supplemented by the data of other observatories during the period near minimum solar activity. This study gives results that agree with known estimates of the coronal EM values, but reveals the absence of any measurable quantities of EM in the transition temperature region 3 × 104 –105 K for all studied large-scale structures. The chromospheric temperature structure (T e = 20,000–5800 K) is quite similar for all objects with extremely low-temperature gradients at deep layers.Some refraction effects were detected in the decimeter range for all Types of large-scale structures, which suggests the presence of dense and compact loops (up to N e =(1–3)× 109 cm-3 number density) for the quiet-Sun coronal regions with temperature T e > 5× 10-5 K.  相似文献   

12.
This paper reviews and analyses various observational data about the local interstellar medium (LISM)-a volume with a radius of about 200 pc near the Sun. There are collected radio, IR, optical, UV, and X-ray observations of the ISM and data on the Sco-Cen association. All available information confirms Weaver's (1979) conclusions that the Sun is located near an edge of a giant cavern with a radius of about 180 pc and the cavern center coincides with the Sco-Cen associated center. The outer rim of the cavern is observed as numerous, very longHi flaments, filaments of the interstellar polarization, and soft X-rays radiated by coronal gas with a temperature of about 106K. Close environment (from 10–4 to 2–5 pc) of the Sun is filled by warm (about 104 K)Hi with the number density 0.1–0.2 cm–3, which is a corona of the local cloud of the ISM. The central part of the cloud is observed to the galactical center direction at a distance of 10–20 pc as Sancini and van Woerden's (1970)Hi filament. The cloud blown round by stellar winds has a horseshoe-like shape, bordering the Sun. Tinbergen's (1982) patch of polarization is observational evidence of the shape.Several arguments are given to show that the bright spots of soft X-rays (130–284 eV) near the galactic poles are produced by an interaction of stellar winds with outer edge of the local cloud near the ends of the patch of polarization. Lyman continuum radiation from Sco-Cen stars was shown to be probably the main source of ionization of extendedHii regions of low density in the LISM. Various data evidence that the North Polar Spur is a SNR in the local cavern with the age of about 105 years. Interaction of the local cavern with an interstellar absorption-free tunnel stretched for more than 1 kpc along the galactical longitudel=240° is discussed. In conclusion several actual problems of investigation of the LISM were formulated.  相似文献   

13.
Photospheric models were calculated for 90 stars with effective temperatures between 2500 K and 41600 K for five logg-values ranging from 1 to 5. Molecule formation was taken into account. In order to have an idea about possible instabilities in the different stellar layers some quantities, characteristic for convection and turbulence were calculated, such as the Rayleigh-, Reynolds-, Prandtl- and Péclet-numbers. It turned out that all the investigated stars contain unstable layers, including the hottest. Nevertheless, only stars with effective temperatures of 8300 K or less contain layers where the convective energy transport is important. For all stars the convective velocities were calculated and also the generated mechanical fluxes in the convection zones were tabulated.Under the hypothesis that this mechanical energy flux is responsible for the heating of the corona, coronal models were constructed for the Sun and for some stars with effective temperatures between 5000 K and 8320 K for logg-values of 4 or 5.For Main Sequence stars the largest fluxes are generated in F-stars; stars withT eff=7130 K and logg=4 possess also the hottest and most dense coronas with a computed temperature of 3.7·106 K and logN e =10.5.The solar corona computed in this way, on the basis of a photospheric mechanical flux of 0.14·108 erg cm–2 sec–1, has a temperature of 1.3·106 K and logN e =9.8. This density is apparently too high, but even when including in the computations all theoretical refinements proposed in the last few years by various authors it does not appear possible to obtain a solar coronal model with a smaller density.However, when taking into account the inhomogeneous structure of the chromosphere and by associating the calculated mechanical fluxes to the coarse mottles, and lower fluxes to the undisturbed regions we find a mean coronal temperature of 1.1·106 K and a mean logN e -values of 9. The computed velocity of the solar wind at a distance of 104 km above the photosphere has a value between 7 and 11 km sec–1. These latter values are in fair agreement with the observations.  相似文献   

14.
The observed intensities of the diffuse interstellar absorption band at 4430 have minimum values, for given stellar distances, that are equivalent to the reddening caused by the small Ambarzumian-type clouds studied by B Strömgren. This indicates that there is no negative hydrogen present between these clouds, which are then identified with the hot H I phase of interstellar matter.The equilibrium density of H inside such clouds is calculated from mean densities of neutral hydrogen atoms and free electrons, derived from radio observations for the local region outside the large Orion-arm clouds. The filling factor of the small clouds is taken to be the same as that preserved in the structure of the Gum Nebula from before its ionization. An electron temperature of 3375 K corresponding to the local degree of ionization of the small-cloud hydrogen then leads to a mean density of negative hydrogen equal to 2×1013 cm–2 kpc–1, in agreement with the observed diffuseband intensities.  相似文献   

15.
We have sought interstellar ethyl-cyanide via its 202–101 transition towards two cold, dark clouds and report upper limits of the total column densities of 3×1012cm–2 and 2×1012cm–2 for TMC-1 and L134N, respectively. We also observed the 202–101 transition of vinyl cyanide previously identified in TMC-1 by Matthews and Sears (1983b). The detection of vinyl cyanide and the non-detection of ethyl cyanide in TMC-1 are consistent with gas phase ion-molecule chemical models, and there is thus no necessity of invoking grain surface synthesis for vinyl cyanide in cold clouds.  相似文献   

16.
Unbound planets     
Current protostellar theory has determined a lower limit to the mass of a pre-stellar gas cloud fragment of ~0.01 M. This suggests that isolated interstellar bodies in the mass range ~10 M-710-2 M must have originated within a planetary system. Two possible mechanisms whereby planets are lost from their parental systems to interstellar space are discussed and the abundance and distribution of such unbound planets within the Galaxy is examined. It is found that, except within the central regions of the Galaxy, unbound planets are expected to be scarce. In the solar neighbourhood for instance, the number density ratio of unbound planets to stars is estimated to range between extremes of ~4 × 10–4–3 × 10–2 with a most probable value of ~6 x 10–3. The faint possibility that the hypothetical Planet X might be of extra-solar origin is also discussed.  相似文献   

17.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

18.
We have quantitatively studied, by infrared absorption spectroscopy, the CO/CO2 molecular number ratio after ion irradiation of ices and mixtures containing astrophysically relevant species such as CO, CO2, H2O, CH4, CH3OH, NH3, O2, and N2 at 12–15 K. The ratios have also been measured after warm up to temperatures between 12 and 200 K. As a general result we find that the CO/CO2 ratio decreases with the irradiation dose (amount of energy deposited on the sample). In all of the studied mixtures, as expected, it decreases with increasing temperature because of CO sublimation. However the temperature where CO sublimes strongly depends on the initial mixture, remaining at a temperature over 100 K in some cases. Our results might be relevant to interpret the observed CO/CO2 ratio in several astrophysical scenarios such as planetary icy surfaces and ice mantles on grains in the interstellar medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The properties of OH megamaser galaxies in the radio continuum are discussed. Many radio sources in OH megamaser galaxies exhibit relatively flat (α ≥ −0.5) radio spectra between frequencies of 1.49 and 8.44 GHz along with high brightness temperatures (Tb ≥ 104 K). In these galaxies the line and radio continuum fluxes are not correlated. The continuum radio emission of OH megamasers is predominantly nonthermal and is associated either with an active nucleus or with compact star formation. The thermal component of the radio emission from these galaxies can be neglected. The observed flat radio spectra and high brightness temperatures imply the existence of an active galactic nucleus, although some megamasers may be associated with compact star formation.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 281–290 (May 2005).  相似文献   

20.
    
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号