首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A strong evolution of galaxies is observed for 0<z<1, as evidenced by an increase of almost an order of magnitude in the galaxy star-formation rate density. However, it is known that dust obscuration has affected our understanding of galaxy evolution over this significant fraction of the age of the Universe. In order to study galaxy evolution free from dust induced biases, an ultra deep radio survey – the Phoenix Deep Survey – was initiated. With a detection limit of 60μJy, this homogeneous survey, complemented with multiwavelength (photometric and spectroscopic) observations, is being used to build a consistent picture of galaxy evolution. The ultra-deep radio source counts are presented, and interpreted using luminosity function evolutionary models. The discovery of extremely dusty galaxies from this survey, along with the clustering properties of the sub-mJy radio population, are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A radio source with a spectral index of −2.2 between 0.08 and 1.425 GHz has been observed at the Very Large Array (VLA) at 1.425 GHz with resolution ∼ 3 arcsec. The projected linear length of the source is 56 kpc with an average projected distance of 42 kpc from the centroid of the rich southern cluster Abell 4038, assuming the source is in the cluster. The physical parameters of the source include a high minimum-energy field ( B me) of 38 μG, which is unusual for a source of low surface brightness and relaxed appearance, but is explained by its unusually steep spectrum. Although its radio morphology has some characteristics of a narrow-angle-tail source (NAT), the absence of an identified host galaxy ( m R ≥ 23.0) makes it unlikely that the source is a working radio galaxy. The relic is probably the remains of an FR II radio galaxy that was once energized by a particular bright cluster elliptical now 18 kpc to its east. The density of the intracluster gas has been sufficient to confine the source and preserve its morphology, permitting the source to age and its spectrum to steepen through synchrotron and inverse Compton energy losses.  相似文献   

4.
We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff–Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu–Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.  相似文献   

5.
We present an optically based study of the alignment between the radio axes and the optical major axes of eight z ∼0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are ≈20 times less radio‐luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest frame wavelengths just longward of the 4000-Å break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15‐kpc scale are not. We discuss these results in the context of popular models for the alignment effect.  相似文献   

6.
7.
8.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

9.
Multifrequency radio observations of the radio galaxy 3C 459 using MERLIN, VLA and the EVN and an optical Hubble Space Telescope ( HST ) image using the F702W filter are presented. The galaxy has a very asymmetric radio structure, a high infrared luminosity and a young stellar population. The eastern component of the double-lobed structure is brighter, much closer to the nucleus and is significantly less polarized than the western one. This is consistent with the jet on the eastern side interacting with dense gas, which could be due to a merged companion or dense cloud of gas. The HST image of the galaxy presented here exhibits filamentary structures and is compared with the MERLIN 5-GHz radio map. EVN observations of the prominent central component, which has a steep radio spectrum, show a strongly curved structure suggesting a bent or helical radio jet. The radio structure of 3C 459 is compared with other highly asymmetric, Fanaroff–Riley II radio sources, which are also good candidates for studying jet–cloud interactions. Such sources are usually of small linear size and it is possible that the jets are interacting with clouds of infalling gas that fuel the radio source.  相似文献   

10.
We present new 1.6-GHz (18-cm) MERLIN maps of 15 Seyfert galaxies, with angular resolutions typically 0.1 to 0.3 arcsec. These and previous observations are used to investigate the properties of 19 of the 24 CfA Seyfert galaxies brighter than 2 mJy at 8.4 GHz. This is the first time a significant fraction of the CfA sample has been mapped at this frequency with subarcsecond resolution, and our observations provide the highest resolution radio maps available for several sources. We use our observations to measure the two-point spectral indices of compact radio components, and we investigate the correlation between infrared and radio emission shown by Seyfert galaxies.
Our results can be summarized as follows. Resolved structures as small as 20 pc are found in three previously unresolved radio sources, and only four sources show single, unresolved radio components. The mean 1.6 to 8.4 GHz spectral index of 31 radio components is         , and approximately 25 per cent of the components have a spectral index flatter than     . The spectral index distributions of type 1 and type 2 Seyferts are statistically indistinguishable. The cores of multiple-component sources tend to have flatter radio spectra than secondary components. The low-resolution infrared ( IRAS ) emission from Seyfert galaxies is usually dominated by kiloparsec-scale, extranuclear emission regions.  相似文献   

11.
Using ROSAT observations, we estimate gas pressures in the X-ray-emitting medium surrounding 63 FRII radio galaxies and quasars. We compare these pressures with the internal pressures of the radio-emitting plasma estimated by assuming minimum energy or equipartition. In the majority of cases (including 12/13 sources with modelled, spatially resolved X-ray emission) radio sources appear to be underpressured with respect to the external medium, suggesting that simple minimum-energy arguments underestimate the internal energy density of the sources. We discuss possible departures from the minimum-energy condition and the consequences of our result for models of the dynamics of radio galaxies, in particular self-similar models .  相似文献   

12.
13.
We present deep near-infrared images, taken with the Subaru Telescope, of the region around the   z =1.08  radio source 3C 356 which show it to be associated with a poor cluster of galaxies. We discuss evidence that this cluster comprises two subclusters traced by the two galaxies previously proposed as identifications for 3C 356, which both seem to harbour active galactic nuclei, and which have the disturbed morphologies expected if they underwent an interpenetrating collision at the time the radio jets were triggered. We explain the high luminosity and temperature of the diffuse X-ray emission from this system as the result of shock heating of intracluster gas by the merger of two galaxy groups. Taken together with the results on other well-studied powerful radio sources, we suggest that the key ingredient for triggering a powerful radio source, at least at epochs corresponding to   z ∼1  , is a galaxy–galaxy interaction which can be orchestrated by the merger of their parent subclusters. This provides an explanation for the rapid decline in the number density of powerful radio sources since   z ∼1  . We argue that attempts to use distant radio-selected clusters to trace the formation and evolution of the general cluster population must address ways in which X-ray properties can be influenced by the radio source, both directly, by mechanisms such as inverse Compton scattering, and indirectly, by the fact that the radio source may be preferentially triggered at a specific time during the formation of the cluster.  相似文献   

14.
Centaurus B (PKS B1343−601) is one of the brightest and closest radio galaxies, with flux density ∼250 Jy at 408 MHz and redshift 0.01215, but it has not been studied much because of its position (i) close to the Galactic plane (it is also known as G309.6+1.7 and Kes 19) and (ii) in the southern sky. It has recently been suggested as the centre of a highly obscured cluster behind the Galactic plane. We present radio observations made with the Australia Telescope Compact Array and Molonglo Observatory Synthesis Telescope to study the jets and lobes. The total intensity and polarization radio images of the FR I jets are used to determine the jet brightness and width variations, magnetic field structure and fractional polarization. The equipartition pressure calculated along the jets declines rapidly over the first 1 arcmin from the galaxy reaching a constant pressure of 10−13  h −4/7 Pa in the lobes blown in the intracluster medium.  相似文献   

15.
16.
17.
18.
We have observed broad H  i absorption in the radio galaxy 3C 293 using Multi-Element Radio Linked Interferometric Network (MERLIN) at 0.2-arcsec angular resolution and the Giant Meterwavelength Radio Telescope (GMRT) at arcsec resolution. Extensive H  i is found in absorption across the centre of this peculiar radio galaxy, allowing a detailed study of the dynamics of the neutral gas on linear scales down to ∼160 pc. In optical depth position–velocity diagrams across the central few kpc we detect a distinct velocity gradient of 179 km s−1 arcsec−1 associated with the broad absorption. This is interpreted as a ring of neutral gas rotating around the suspected position of the active galactic nucleus (AGN) . The radius of this high velocity gradient ring is found to be >0.74 arcsec (600 pc), implying an upper limit upon the enclosed mass of     , assuming a near edge-on disc with an inclination of i . The optical depth of H  i is mapped across the entire central region of 3C 293 showing enhancements of a factor of 4 in the areas that are co-spatial with dust lanes seen in Hubble Space Telescope ( HST ) imaging of this galaxy.  相似文献   

19.
20.
We report the discovery of a double–double radio galaxy (DDRG), J0041+3224, with the Giant Metrewave Radio Telescope (GMRT) and subsequent high-frequency observations with the Very Large Array (VLA). The inner and outer doubles are aligned within ∼4° and are reasonably collinear with the parent optical galaxy. The outer double has a steeper radio spectrum compared to the inner one. Using an estimated redshift of 0.45, the projected linear sizes of the outer and inner doubles are 969 and 171 kpc, respectively. The time-scale of interruption of jet activity has been estimated to be ∼20 Myr, similar to other known DDRGs. We have compiled a sample of known DDRGs, and have re-examined the inverse correlation between the ratio of the luminosities of the outer to the inner double and the size of the inner double, l in. Unlike the other DDRGs with   l in≳ 50 kpc  , the inner double of J0041+3224 is marginally more luminous than the outer one. The two DDRGs with   l in≲  few kpc have a more luminous inner double than the outer one, possibly due to a higher efficiency of conversion of beam energy as the jets propagate through the dense interstellar medium. We have examined the symmetry parameters and found that the inner doubles appear to be more asymmetric in both its armlength and its flux density ratios compared to the outer doubles, although they appear marginally more collinear with the core than the outer double. We discuss briefly the possible implications of these trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号