首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Kα line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.  相似文献   

2.
We have analyzed the spectra of blue compact dwarf galaxies from the SLOAN Digital Sky Survey (SDSS) Data Release 7 and created a sample of 271 galaxies with Wolf-Rayet (WR) spectral features produced by high-velocity stellar winds. A blue WR feature (bump) is a blend of the N V λλ 460.5 and 462.0 nm, N III λλ 463.4 and 464.0 nm, C III λ 465.0 nm, C IV λ 465.8 nm, and He II λ 468.6 nm emission lines. A red WR feature (bump) is the broad C IV λ 580.8 nm emission. The blue WR bump is mainly due to emissions of nitrogen WR (WN) stars, while the red bump is fully produced by emissions of carbon WR (WC) stars. All the sample spectra show the blue WR bumps, whereas the red WR bumps are only identified in 50% of sample spectra. We have derived the numbers of early-type WC stars (WCE) and late-type WN stars (WNL) in the galaxies using the luminosities of single WC and WN stars in the red and blue bumps, respectively. The number of O stars is estimated using the Hβ luminosity. The ratio of the overall number of WR stars of different types to the number of all massive stars N(WR)/N(O + WR) decreases with decreasing metallicity, corresponding to the evolution population synthesis models.  相似文献   

3.
Wolf-Rayet stars     
This paper reviews the current status of knowledge regarding the basic physical and chemical properties of Wolf-Rayet stars; their overall mass loss and stellar wind characteristics and current ideas about their evolutionary status. WR stars are believed to be the evolved descendents of massive O-type stars, in which extensive mass loss reveals successive stages of nuclear processed material: WN stars the products of interior CNO-cycle hydrogen burning, and WC and WO stars the products of interior helium burning. Recent stellar evolution models, particularly those incorporating internal mixing, predict results which are in good accord with the different chemical compositions observationally inferred for WN, WC and WO stars. WR stars exhibit the highest levels of mass loss amongst earlytype stars: mass loss rates, typically, lie in the range [1–10]×10−5 M yr−1. Radiation pressure-driven winds incorporating multi-scattering in high ionisation-stratified winds may cause these levels, but additional mechanisms may also be needed.  相似文献   

4.
We present a detailed, quantitative study of the standard [WC10] Wolf-Rayet central star CPD-56o 8032 based on new high resolution AAT UCLES observations and the Hillier (1990) WR standard model. Our analysis of CPD-56o 8032 gives the wind properties (T *=34500K, lg (L/L )=3.8, lg (M/M a–1)=–5.4,v =225 km s–1) and chemistry (C/He=0.5, O/He=0.1, by number), the latter suggesting an intimate relationship with the Ovi PN central stars and the PG 1159-035 objects. A comparison between the wind properties of CPD-56o 8032 and Sk-66o 40 (WN 10) indicates that low excitation, low wind velocity WR winds are common to both low mass PN central stars (WC sequence) and high mass post-LBV's (WN sequence).  相似文献   

5.
We report the discovery of 15 previously unknown Wolf–Rayet (WR) stars found as part of an infrared (IR) broad-band study of candidate WR stars in the Galaxy. We have derived an empirically based selection algorithm which has selected ∼5000 WR candidate stars located within the Galactic plane drawn from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (mid-IR) and Two-Micron All-Sky Survey (near-IR) catalogues. Spectroscopic follow-up of 184 of these reveals 11 nitrogen-rich (WN) and four carbon-rich (WC) WR stars. Early WC subtypes are absent from our sample and none shows evidence for circumstellar dust emission. Of the candidates which are not WR stars, ∼120 displayed hydrogen emission-line features in their spectra. Spectral features suggest that the majority of these are in fact B supergiants/hypergiants, ∼40 of these are identified Be/B[e] candidates.
Here, we present the optical spectra for six of the newly detected WR stars, and the near-IR spectra for the remaining nine of our sample. With a WR yield rate of ∼7 per cent and a massive star detection rate of ∼65 per cent, initial results suggest that this method is one of the most successful means for locating evolved, massive stars in the Galaxy.  相似文献   

6.
《New Astronomy Reviews》2000,44(4-6):235-240
The analysis of the long-slit spectral observations of 40 Wolf-Rayet (WR) galaxies with heavy element mass fraction ranging over two orders of magnitudes from Z/50 to 2Z are presented. We derive the number of O stars from the luminosity of the Hβ emission line, the number of early carbon Wolf-Rayet stars (WCE) from the luminosity of the red bump (broad CIV λ5808 emission) and the number of late nitrogen Wolf-Rayet stars (WNL) from the luminosity of the blue bump (broad emission near λ4650). We identified some of weak WR emission lines, most often the N III λ4512 and Si III λ4565 lines, which have very rarely or never been seen and discussed before in WR galaxies. A new technique for deriving the number of WNL stars (WN7–WN8) from the N III λ4512 and the number of WN9–WN11 from Si III λ4565 emission lines has been proposed. This technique is potentially more precise than the blue bump method because it does not suffer from contamination of WCE and early WN (WNE) stars and nebular gaseous emission. We find that the fraction of WR stars relative to all massive stars increases with increasing metallicity, in agreement with predictions of evolutionary synthesis models. The relative number ratios N(WC)/N(WN) and the equivalent widths of the blue and red bumps derived from observations are also in satisfactory agreement with theoretical predictions, except for the most metal-deficient WR galaxies. A possible source of disagreement is too low a line emission luminosity adopted for a single WCE star in low-metallicity models.  相似文献   

7.
We present the results of an analysis of the winds of two WC10 central stars of planetary nebulae, CPD-56°8032 and He 2-113. These two stars have remarkably similar spectra, although the former exhibits somewhat broader emission line widths. High resolution spectra (up to R=50 000) were obtained in May 1993 for both objects at the 3.9 m AAT, using the UCL Echelle Spectrograph. The fluxes in individual Cii auto-ionising multiplet components, many of which were blended, were derived. Lines originating from auto-ionising resonance states situated in the C2+ continuum are very sensitive to the electron temperature, since the population of the these levels is close to LTE. The measured widths and profile shapes of these transitions are presented and are in excellent agreement with those predicted on the basis of their calculated auto-ionising lifetimes. The wind electron temperature is derived for both stars from the ratio of the fluxes in four such transitions (T e =18 500 K±1 500 K for CPD-56° 8032 andT e =13 600 K±800 K for He 2-113). Optical depth effects are investigated using normal recombination lines to obtain an independent wind electron temperature estimate in excellent agreement with the dielectronic line analysis.  相似文献   

8.
Do some Wolf–Rayet stars owe their strong winds to something else besides radiation pressure? The answer to this question is still not entirely obvious, especially in certain Wolf–Rayet subclasses, mainly WN8 and WC9. Both of these types of Wolf–Rayet stars are thought to be highly variable, as suggested by observations, possibly due to pulsations. However, only the WN8 stars have so far been vigorously and systematically investigated for variability. We present here the results of a systematic survey during three consecutive weeks of 19 Galactic WC9 stars and one WC8 star for photometric variability in two optical bands, V and I . Of particular interest are the correlated variations in brightness and colour index in the context of carbon dust formation, which occurs frequently in WC9 and some WC8 stars. In the most variable case, WR76, we used this information to derive a typical dust grain size of  ∼ 0.1 μm  . However, most photometric variations occur at surprisingly low levels, and in fact almost half of our sample shows no significant variability at all above the instrumental level (  σ∼ 0.005– 0.01  mag).  相似文献   

9.
The results of investigations of a number of eclipsing Wolf-Rayet binaries are presented. The ‘core’ radiuses, the ‘core’ temperatures and masses of WR stars in the eclipsing WR+OB binary systems V 444 Cyg, CX Cep, CQ Cep, and CV Ser are obtained (see Table I). The results obtained from the light curves analysis of the V 444 Cyg in the range λλ2460 Å-3.5μ give strong evidence for the Beals (1944) model of WR phenomenon. The chromospheric-coronal effects in the WN5 extended atmosphere are not observed up to a distance ofr?20R . In the Hertzsprung—Russell diagram all the WR stars lie on the left side from the main sequence between the main sequence and the sequence of uniform helium stars (see Figure 9). Their locations are close to those of the helium remnants formed as a result of mass exchange in massive close binary systems. The period variations in the systems V 444 Cyg and CQ Cep have been discovered and a reliable value of the mass loss rateM=10?5 M yr?1 is obtained, for the two WR stars. The results of the photometric and spectroscopic investigations of the WR stars with low mass companions (post X-ray binary stage?) are presented too (see Table II). The masses of the companions are (1–2)M , their optical luminosity is ~1036, erg s?1 which implies that these companions cannot be the normal stars. It is possible that these companions are neutron stars accreting from the stellar wind of the WR stars. Low values of the X-ray luminosities of such WR stars with low mass companions imply that the accretion of matter in such systems is distinct from the accretion process in classical X-ray binary systems. It is noted also that the parameters of low massive companions coupled with WR stars are close to those of helium stars.  相似文献   

10.
We collected almost all Galactic Wolf-Rayet (hereafter WR) stars found so far from the literature. 578 WR stars are gathered in this paper. 2MASS counterparts with good quality magnitudes in all JHK bands are listed for 364 WR stars. In addition, WISE counterparts for these sources are also identified. It is found that free-free emission is the main dominant source for the infrared excess in most WR stars up to 3.4 μm. However at the longer wavelengths the thermal radiation is dominant. In addition, WR stars in Clusters of the Galactic center region have the strong infrared excess in the near infrared due to the dust thermal emission from the strong star forming activity in the Galactic center region. For some WR stars with the WC spectral type, in particular, with WCd type, the dust thermal emission is important radiation source while many WR stars with the WC spectral type have the near infrared flux enhancement from the broad line emission in the K band. It is also shown that many single WC stars with different spectral sub-types have different locations in the near infrared two-color diagram, in particular, WC6 and WC9d stars can be separated respectively from other spectral type stars while single WN stars with different spectral sub-types can not be separated in the near infrared two-color diagram.  相似文献   

11.
The recent evolution of the central star of the planetary nebula LMC-N66 is presented. Before 1987, it showed a weak continuum with aT eff120 000 K andL bol25 000L and in a few years it developed strong WR features (P Cygni line profiles in N v at 124.0 nm and C IV at 155.0 nm, wide Heii emission, etc.) typical of a WN 4.5. Additionally the stellar continuum increased by a large factor and the absolute visual magnitude of the star changed from + 1.24 in 1987 to–2.57 in January, 1995. The WR features and enhanced continuum, evidencing a powerful mass-loss event remained with small variations for more than 5 years. Recent ultraviolet and optical data shows that the mass-loss seems to have diminished abruptly in the last three months.  相似文献   

12.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

13.
Radiation-driven winds of hot, massive stars showvariability in UV and optical line profiles on time scales of hours to days.Shock heating of wind material is indicated by the observed X-ray emission. We present time-dependent hydrodynamical models of these winds, where flowstructures originate from a strong instability of the radiative driving. Recent calculations (Owocki 1992) of the unstable growth of perturbations were restricted by the assumptions of 1-D spherical symmetry and isothermality of the wind. We drop the latter assumption and include the energy transfer in the wind. This leads to a severe numerical shortcoming, whereby all radiative cooling zones collapse and the shocks become isothermal again. We propose a method to hinder this collapse. Calculations for dense supergiant winds then show: (1) The wind consists of a sequence of narrow and dense shells, which are enclosed by strong reverse shocks (with temperatures of 106 to 107 K) on their starward facing side. (2) Collisions of shells are frequent up to 6 to 7 stellar radii. (3) Radiative cooling is efficient only up to 4 to 6R *. Beyond these radii, cooling zones behind shocks become broad and alter the wind structure drastically: all reverse shocks disappear, leaving regions ofpreviously heated gas.  相似文献   

14.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A reanalysis of the (seemingly very distant) open cluster Shorlin 1, the group of stars associated with WR 38 and WR 38a, is made on the basis of existing UBV and JHK s observations for cluster members. The 2MASS observations, in particular, imply a mean cluster reddening of E BV =1.45±0.07 and a distance of 2.94±0.12 kpc. The reddening agrees with the UBV results provided that the local reddening slope is described by E UB /E BV =0.64±0.01, but the distance estimates in the 2MASS and UBV systems agree only if the ratio of total-to-selective extinction for the associated dust is R=A V /E BV =4.0±0.1. Both results are similar to what has been obtained for adjacent clusters in the Eta Carinae region by similar analyses, which suggests that “anomalous” dust extinction is widespread through the region, particularly for groups reddened by relatively nearby dust. Dust associated with the Eta Carinae complex itself appears to exhibit more “normal” qualities. The results have direct implications for the interpretation of distances to optical spiral arm indicators for the Galaxy at =287°–291°, in particular the Carina arm here is probably little more than ∼2 kpc distant, rather than 2.5–3 kpc distant as implied in previous studies. Newly-derived intrinsic parameters for the two cluster Wolf-Rayet stars WR 38 (WC4) and WR 38a (WN5) are in good agreement with what is found for other WR stars in Galactic open clusters, which was not the case previously.  相似文献   

16.
We discuss a collection of archival multi-colour photometric data of the variable WC9-type Wolf-Rayet star WR?103?=?HD?164270 observed over a time interval of eleven years. The photometric systems used are Walraven VBLUW, Bessel UBV and Strömgren uvby. The purpose is to search for periodicity and to disentangle continuum and line emission variations. The star turns out to be stochastically variable in all time intervals under consideration. The time scale of the variations hovers between a few hours to a few days. The continuum light amplitude varies from ~ 0.m1 in the visual to ~ 0.m2 in the UV. Emission-line variations at the level of 1–5 % percent are detectable in all pass bands, but are largest in the Strömgren b and Walraven V filters, due to the prominent presence of the Ciii emission lines (blended with a much weaker Oii line) at 4650 and 5696?Å?emission lines, respectively. The relative large light amplitude of WR?103 resembles that of WN8-type stars; a possible link between the two is discussed. Stellar (multi-mode) pulsations are likely the cause of the photometric variability. We also discuss the exceptional status of WR?103 within the class of WC9-type stars which are almost photometrically stable. A striking phenomenon observed for the first time in WR?103: a three days lasting flux enhancement of the Ciii line by at least 10 % was observed in August 1998. Such strong spectroscopic flare-like events are very seldom observed in WR stars. So far, the one of WR?103 had the longest duration ever observed.  相似文献   

17.
On the basis of evolutionary tracks on the HR diagram the lower limit of initial mass functions for Wolf-Rayet stars are estimated. The lower limit to the initial masses of the Wolf-Rayet stars seems to be 20M and in this respect there is no significant difference between the WN and WC stars.  相似文献   

18.
The quantification of stochastic substructures seen propagating away from the centers of emission lines of Wolf-Rayet (WR) stars is extended using the powerful, objective technique of wavelet analysis. Results for the substructures in one WR star so far show that the scaling laws between (a) flux and velocity dispersion and (b) lifetime and flux, combined with (c) their mass spectrum, strongly support the hypothesis that we are seeing the high mass tail-end distribution of full-scale supersonic compressible turbulence in the winds. This turbulence sets in beyond a critical radius from the star and shows remarkable similarity to the hierarchy of cloudlets seen in giant molecular clouds and other components of the ISM.The velocity dispersion is larger on average for substructures (interpreted as density enhanced turbulent eddies) propagating towards or away from the observer, suggesting that the turbulence is anisotropic. This is not surprising, since the most likely force which drives the windand the ensuing turbulence alike, radiation pressure, is directed outwards in all directions from the star. It is likely that a similar kind of turbulence prevails in the winds of all hot stars, of which those of WR stars are the most extreme.The consequences of clumping in winds are numerous. One of the most important is the necessary reduction in the estimate of the mass-loss rates compared to smooth outflow models.  相似文献   

19.
Wolf-Rayet stars     
Summary Recent literature on Population I Wolf-Rayet star research extending from the Milky Way to blue compact dwarf galaxies is reviewed, broken down into inventory, basic parameters and galactic distribution, atmospheres, binaries, intrinsic variability, mass loss, enrichment and evolution. Also the incidence of Wolf-Rayet stars with variable non-thermal radio emission, excess X-ray fluxes, and episodic/periodic IR excesses is reviewed. These phenomena appear to be associated with wind-wind interaction in wide long-period WR+OB binaries and with wind-compact object interaction in WR+c binaries, with orbit sizes of the order of magnitude of the WR radio photosphere sizes or larger.  相似文献   

20.
We review and discuss horizontal branch (HB) stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC—an argument which, due to its strong reliance on the ancient RR Lyrae stars, is essentially independent of the chemical evolution of these systems after the very earliest epochs in the Galaxy’s history. Convenient analytical fits to isochrones in the HB type–[Fe/H] plane are also provided. In this sense, a rediscussion of the second-parameter problem is also presented, focusing on the cases of NGC 288/NGC 362, M13/M3, the extreme outer-halo globular clusters with predominantly red HBs, and the metal-rich globular clusters NGC 6388 and NGC 6441. The recently revived possibility that the helium abundance may play an important role as a second parameter is also addressed, and possible constraints on this scenario discussed. We critically discuss the possibility that the observed properties of HB stars in NGC 6388 and NGC 6441 might be accounted for if these clusters possess a relatively minor population of helium-enriched stars. A technique is proposed to estimate the HB types of extragalactic globular clusters on the basis of integrated far-UV photometry. The importance of bright type II Cepheids as tracers of faint blue HB stars in distant systems is also emphasized. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyr, is also revisited. Taking into due account the evolutionary status of RR Lyr, the derived relation implies a true distance modulus to the LMC of (mM)0=18.44±0.11. Techniques providing discrepant slopes and zero points for the M V (RRL)–[Fe/H] relation are briefly discussed. We provide a convenient analytical fit to theoretical model predictions for the period change rates of RR Lyrae stars in globular clusters, and compare the model results with the available data. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are also investigated. M. Catelan is John Simon Guggenheim Memorial Foundation Fellow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号