首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract— We examine the size sorting of chondrules and metal grains within the context of the jet flow model for chondrule/CAI formation. In this model, chondrules, CAIs, AOAs, metal grains, and related components of meteorites are assumed to have formed in the outflow region of the innermost regions of the solar nebula and then were ejected, via the agency of a bipolar jet flow, to outer regions of the nebula. We wish to see if size sorting of chondrules and metal grains is a natural consequence of this model. To assist in this task, we used a multiprocessor system to undertake Monte Carlo simulations of the early solar nebula. The paths of a statistically significant number of chondrules and metal grains were analyzed as they were ejected from the outflow and travelled over or into the solar nebula. For statistical reasons, only distances ≤3 AU from the Sun were examined. Our results suggest that size sorting can occur provided that the solar nebula jet flow had a relatively constant flow rate as function of time. A constant flow rate outflow produces size sorting, but it also produces a sharp size distribution of particles across the nebula and a metal‐rich Fe/Si ratio. When the other extreme of a fully random flow rate was examined, it was found that size sorting was removed, and the initial material injected into the flow was simply spread over most of the the solar nebula. These results indicate that the outflow can act as a size and density classifier. By simply varying the flow rate, the outflow can produce different types of proto‐meteorites from the same chondrule and metal grain feed stock. As a consequence of these investigations, we observed that the number of particles that impact into the nebula drops off moderately rapidly as a function of distance r from the Sun. We also derive a corrected form of the Epstein stopping time.  相似文献   

2.
Abstract— The presence of high‐temperature materials in the Stardust collection that are isotopically similar to those seen in chondritic meteorites argues for the outward transport of materials from the hot, inner region of the solar nebula to the region where comets formed. A number of mechanisms have been proposed to be responsible for this transport, with a number of models being developed to show that such outward transport is possible. However, these models have not examined in detail how these grains are transported after they have been delivered to the comet formation region or how they may be distributed in the cometary nuclei that form. Here, the dynamical evolution of crystalline silicates injected onto the surface of the solar nebula as proposed by jet models for radial transport is considered. It is generally found that crystalline grains should be heterogeneously distributed within the population of comets and within individual cometary nuclei. In order to achieve a homogeneous distribution of such grains, turbulence must be effective at mixing the crystalline silicates with native, amorphous grains on fine scales. However, this turbulent mixing would serve to dilute the crystalline silicates as it would redistribute them over large radial distances. These results suggest that it is difficult to infer the bulk properties of Wild 2 from the Stardust samples, and that the abundance of crystalline grains in these samples cannot alone be used to rule out or in favor of any of the different radial transport models that have been proposed.  相似文献   

3.
Abstract— Analyses of the isotopic compositions of multiple elements (Mo, Zr, and Ba) in individual mainstream presolar SiC grains were done by resonant ionization mass spectrometry (RIMS). While most heavy element compositions were consistent with model predictions for the slow neutron capture process (s‐process) in low‐mass (1.5–3 M) asymptotic giant branch stars of solar metallicity when viewed on single‐element three‐isotope plots, grains with compositions deviating from model predictions were identified on multi‐element plots. These grains have compositions that cannot result from any neutron capture process but can be explained by contamination in some elements with solar system material. Previous work in which only one heavy element per grain was examined has been unable to identify contaminated grains. The multi‐element analyses of this study detected contaminated grains which were subsequently eliminated from consideration. The uncontaminated grains form a data set with a greatly reduced spread on the three‐isotope plots of each element measured, corresponding to a smaller range of 13C pocket efficiencies in parent AGB stars. Furthermore, due to this reduced spread, the nature of the stellar starting material, previously interpreted as having solar isotopic composition, is uncertain. The constraint on 13C pocket efficiencies in parent stars of these grains may help uncover the mechanism responsible for formation of 13C, the primary neutron source for s‐process nucleosynthesis in low‐mass stars.  相似文献   

4.
Assuming that the spin and magnetic axis of Jupiter are strictly parallel and that the grain charge remains constant we have derived two integrals of the 3D equations of motion of charged dust grains moving within the co-rotating regions of the Jovian magnetosphere taking into account both planetary gravitation and magnetospheric rotation. We then apply this model to study the fate of fine dust injected into the Jovian magnetosphere as a result of the tidal disruption of comet Shoemaker-Levy 9 during its first encounter with Jupiter in July 1992. This analysis, which uses the integrals of the equation of motion rather than the equation of motion itself as was done by Horanyi (1994), does not allow us to calculate the orbits or the orbital evolution of the grains. But it does allow us to construct the spatial regions to which the grains are confined, at least initially before evolutionary effects take over. We have chosen three points along the path of the disintegrating comet for the injection of dust and used two values for the uncertain floating potential of the dust in the inner Jovian magnetosphere. Grains can have three different fates, depending on their size, their acquired potential and their point of injection. While the smallest grains are quickly lost by collision with the planet at high latitudes independent of the sign of their charge, those in an intermediate but narrow size range, injected near the equatorial plane can be trapped in a region close to it, this being true for both positive and negative grains. While somewhat larger positive grains may be initially ejected outward by the co-rotational electric force, similar negative grains, pulled inward by this force collide with the planet at low latitudes. In all cases the largest grains, which are dominated by planetary gravity, initially escape from the inner magnetosphere by following in the path of the comet.Using a detailed time dependent numerical calculation of the jovicentric orbits of the charged dust debris of the disintegrating comet, that allows for variation in the grain potential, while also allowing for perturbations of the grain orbits due to solar radiation pressure and solar gravity Horanyi (1994) found that grains in the size range (1.5m <a < 2.5m) which initially make large excursions from the planet, will eventually form a ring in the radial range 4.5R J <r < 6R J . Our present analytical calculation cannot make such a prediction about the evolutionary fate of the dust debris. It can, however, estimate the size of the grains that are initially confined to regions near the points of injection, before evolutionary effects become important.  相似文献   

5.
J.E. Chambers 《Icarus》2010,208(2):505-19170
The formation of 1-1000 km diameter planetesimals from dust grains in a protoplanetary disk is a key step in planet formation. Conventional models for planetesimal formation involve pairwise sticking of dust grains, or the sedimentation of dust grains to a thin layer at the disk midplane followed by gravitational instability. Each of these mechanisms is likely to be frustrated if the disk is turbulent. Particles with stopping times comparable to the turnover time of the smallest eddies in a turbulent disk can become concentrated into dense clumps that may be the precursors of planetesimals. Such particles are roughly millimeter-sized for a typical protoplanetary disk. To survive to become planetesimals, clumps need to form in regions of low vorticity to avoid rotational breakup. In addition, clumps must have sufficient self gravity to avoid break up due to the ram pressure of the surrounding gas. Given these constraints, the rate of planetesimal formation can be estimated using a cascade model for the distribution of particle concentration and vorticity within eddies of various sizes in a turbulent disk. We estimate planetesimal formation rates and planetesimal diameters as a function of distance from a star for a range of protoplanetary disk parameters. For material with a solar composition, the dust-to-gas ratio is too low to allow efficient planetesimal formation, and most solid material will remain in small particles. Enhancement of the dust-to-gas ratio by 1-2 orders of magnitude, either vertically or radially, allows most solid material to be converted into planetesimals within the typical lifetime of a disk. Such dust-to-gas ratios may occur near the disk midplane as a result of vertical settling of short-lived clumps prior to clump breakup. Planetesimal formation rates are sensitive to the assumed size and rotational speed of the largest eddies in the disk, and formation rates increase substantially if the largest eddies rotate more slowly than the disk itself. Planetesimal formation becomes more efficient with increasing distance from the star unless the disk surface density profile has a slope of −1.5 or steeper as a function of distance. Planetesimal formation rates typically increase by an order-of-magnitude or more moving outward across the snow line for a solid surface density increase of a factor of 2. In all cases considered, the modal planetesimal size increases with roughly the square root of distance from the star. Typical modal diameters are 100 km and 400 km in the regions corresponding to the asteroid belt and Kuiper belt in the Solar System, respectively.  相似文献   

6.
A.G.W. Cameron 《Icarus》1973,18(3):407-450
Particle accumulation processes are discussed for a variety of physical environments, ranging from the collapse phase of an interstellar cloud to the different parts of the models of the primitive solar nebula constructed by Cameron and Pine. Because of turbulence in the collapsing interstellar gas, it is concluded that interstellar grains accumulate into bodies with radii of a few tens of centimeters before the outer parts of the solar nebula are formed. These bodies can descend quite rapidly through the gas toward midplane of the nebula, and accumulation to planetary size can occur in a few thousand years. Substantial modifications of these processes take place in the outer convection zone of the solar nebula, but again it is concluded that bodies in that zone can grow to planetary size in a few thousand years.From the discussion of the interstellar collapse phase it is concluded that the angular momentum of the primitive solar nebula was predominantly of random turbulent origin, and that it is plausible that the primitive solar nebula should have possessed satellite nebulae in highly elliptical orbits. It is proposed that the comets were formed in these satellite nebulae.A number of other detailed conclusions are drawn from the analysis. It is shown to be plausible that an iron-rich planet should be formed in the inner part of the outer nebular convection zone. Discussions are given of the processes of planetary gas accretion, the formation of satellites, the T Tauri solar wind, and the dissipation of excess condensed material after the nebular gases have been removed by the T Tauri solar wind. It is shown that the present radial distances of the planets (but not Bode's Law) should be predicted reasonably well by a solar nebula model intermediate between the uniform and linear cases of Cameron and Pine.  相似文献   

7.
Abstract– In the absence of global turbulence, solid particles in the solar nebula tend to settle toward the midplane, forming a layer with enhanced solids/gas ratio. Shear relative to the surrounding pressure‐supported gas generates turbulence within the layer, inhibiting further settling and preventing gravitational instability. Turbulence and size‐dependent drift velocities cause collisions between particles. Relative velocities between small grains and meter‐sized bodies are typically about 50 m s?1 for isolated particles; however, in a dense particle layer, collective effects alter the motion of the gas near the midplane. Here, we develop a numerical model for the coupled motions of gas and particles of arbitrary size, based on the assumption that turbulent viscosity transfers momentum on the scale of the Ekman length. The vertical distribution of particles is determined by a balance between settling and turbulent diffusion. Self‐consistent distributions of density, turbulent velocities, and radial fluxes of gas and particles of different sizes are determined. Collective effects generate turbulence that increases relative velocities between small particles, but reduce velocities between small grains and bodies of decimeter size or larger by bringing the layer’s motion closer to Keplerian. This effect may alleviate the “meter‐size barrier” to collisional growth of planetesimals.  相似文献   

8.
Abstract— Collision experiments and measurements of viscoelastic properties were performed involving an interstellar organic material analogue to investigate the growth of organic grains in the protosolar nebula. The organic material was found to be stickiest at a radius of between 2.3 and 3.0 AU, with a maximum sticking velocity of 5 m s?1 for millimeter‐size organic grains. This stickiness is considered to have resulted in the very rapid coagulation of organic grain aggregates and subsequent formation of planetesimals in the early stage of the turbulent accretion disk. The planetesimals formed in this region appear to be represent achondrite parent bodies. In contrast, the formation of planetesimals at <2.1 and >3.0 AU begins with the establishment of a passive disk because silicate and ice grains are not as sticky as organic grains.  相似文献   

9.
Of the formation processes in the solar system, the process of growth and sedimentation of dust grains in the primordial solar nebula is investigated for a region near the Earth's orbit. The growth equation for dust grains, which are sinking as well as being in thermal motion, is solved numerically in the wide mass range between 10?12 and 106 g. Any turbulent motions in the nebula are assumed to have already decayed when the sedimentation begins. The numerical simulation shows that the growth and sedimentation proceed faster than was found by Kusaka et al. (1970) but in accordance with the estimate of Safronov (1969) owing to a cooperative interaction of the growth and the sedimentation; that is, at about 3 × 103 years after the beginning of the growth and sedimentation a dust layer, composed of centimeter-sized grains, is formed at the equator of the solar nebula. Furthermore, the mass density of dust grains floating in the outer layers of the nebula is found to be of the order of 10?5 after 105 years compared with that before the sedimentation. From these results, it can be estimated that at about 5 × 103 years after the beginning of sedimentation the dust layer breaks up owing to the onset of gravitational instability.  相似文献   

10.
The discovery of isotopic anomalies in white inclusions of the meteorite Allende has led to fundamental questions concerning the origin of these anomalies and of the white inclusions themselves. An analysis of the FUN anomalies in the inclusions C1 and EK1-4-1 demonstrates that these isotopic anomalies may be decomposed into individual nucleosynthetic components, which have been subjected to separate mass and component fractionations. There is no evidence that any freshlysynthesized material injected into the primitive solar nebula was of abnormal isotopic composition, or that the FUN anomalies were due to an injection of unusual material. Rather, they show the effects of form of interstellar grains whose size or chemistry served as a memory for the nucleosynthetic origins of their constituent atoms. Giant gaseous protoplanets, as described for the early solar nebula by Cameron (1978), are a potential site for achieving both mass and component fractionations, and for producing white inclusions in general.  相似文献   

11.
In accretion disk models of the solar nebula, turbulence is driven by convective instability. This mechanism requires high opacity, which must be provided by solid grains. Evolution of the grain size distribution in a turbulent disk is computed numerically, using realistic collisional outcomes and strengths of grain aggregates, rather than an arbitrary “sticking efficiency.” The presence of turbulence greatly increases the rate of grain collisions; the coagulation rate is initially much greater than in a nonturbulent disk. Aggregates quickly reach sizes ~0.1–1 cm, but erosion and breakup in collisions prevent growth of larger bodies for plausible aggregate impact strengths. These aggregates are too small to settle to the plane of the disk, and planetesimal formation is impossible as long as the turbulence persists. However, the opacity of the disk is reduced by aggregate formation; some combinations of opacity law and surface density produce an optically thin disk, cutting off turbulent convection. The disk may experience alternating periods of turbulence and quiescence, as grains are depleted by coagulation and replenished by infall from the presolar cloud. Planetesimals can form only during the quiescent intervals; it is argued that such episodes were rare during the lifetime of the accretion disk.  相似文献   

12.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

13.
There are two angular momentum (AM) problems associated with the formation of stars in general and the solar system in particular. The first is how to dispose of the AM possessed by turbulent protostellar clouds. Two-dimensional calculations of the gravitational infall of rotating gas clouds by several authors now indicate that stars are formed in groups or clusters rather than as single entities. Added evidence comes from observation of probable regions of star formation and young clusters, plus the fact that most stars are presently members of binaries or other multiples. Thus the first problem is solved by postulating the fragmentation of massive clouds with most of the AM ending up in the relative orbits. These clusters are notoriously unstable and evolve with the ejection of single stars like the Sun.The second problem is the uneven distribution of AM with mass in the solar system. It turns out that the collapse time for the majority of the infalling material is comparable to the time necessary for significant dynamical interaction of the protostellar fragment with its neighbors. It is found here through calculations utilizing very simplified numerical models that the last few tens of percent of infalling material can easily have sufficient AM transferred to it by the tidal action of passing protostars to form a solar nebula and ensure alignment of the solar spin. The most important parameter is the degree of central condensation: fragments without several tenthsM in a central core tend to be torn apart by encounters, or at least stimulated into binary fission. A stabilizing central mass maintains its identity and acquires a rotating envelope of material.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

14.
Forgács-dajka  E.  Petrovay  K. 《Solar physics》2001,203(2):195-210
Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of η∼1010 cm2 s−1 (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B p, η). The assumption of the dynamo field penetrating into the tachocline is consistent whenever η≳109 cm2 s−1. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1013389631585  相似文献   

15.
Abstract— Carbon stars are an important source of presolar TiC, SiC, and graphite grains found in meteorites. The elemental abundances in the stellar sources of the SiC grains are inferred by using condensation calculations. These elemental abundances, together with C isotopic compositions, are used to identify possible groups of carbon stars that may have contributed SiC grains to the presolar dust cloud. The most likely parent stars of meteoritic SiC mainstream grains are N-type carbon stars and evolved subgiant CH stars. Both have s-process element abundances higher than solar and 10 < 12C/13C < 100 ratios. The J stars and giant CH stars, with solar and greater than solar abundances of s-process elements, respectively, are good candidate parents for the ‘A’ and ‘B’ SiC grains with low 12C/13C ratios. A special subgroup of CH giant stars with very large 12C/13C ratios could have parented the ‘Y’ SiC grains with 12C/13C ratios > 100. The carbon star population (e.g., N, R, J, CH groups) needed to provide the observed SiC grains is compared to the current population of carbon stars. This comparison suggests that low-metallicity CH stars may have been more abundant in the past (>4.5 Ga ago) than at present. This suggestion is also supported by condensation-chemistry modeling of the trace element patterns in the SiC grains that shows that subsolar Fe abundances may be required in the stellar sources for many SiC grains. The results of this study suggest that presolar SiC grains in meteorites can provide information about carbon stars during galactic evolution.  相似文献   

16.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

17.
Abstract— We have measured the titanium isotopic compositions of 23 silicon carbide grains from the Orgueil (CI) carbonaceous chondrites for which isotopic compositions of silicon, carbon, and nitrogen and aluminum‐magnesium systematics had been measured previously. Using the 16 most‐precise measurements, we estimate the relative contributions of stellar nucleosynthesis during the asymptotic giant branch (AGB) phase and the initial compositions of the parent stars to the compositions of the grains. To do this, we compare our data to the results of several published stellar models that employ different values for some important parameters. Our analysis confirms that s‐process synthesis during the AGB phase only slightly modified the titanium compositions in the envelopes of the stars where mainstream silicon carbide grains formed, as it did for silicon. Our analysis suggests that the parent stars of the >1 μm silicon carbide grains that we measured were generally somewhat more massive than the Sun (2–3 M) and had metallicities similar to or slightly higher than solar. Here we differ slightly from results of previous studies, which indicated masses at the lower end of the range 1.5–3 M and metallicities near solar. We also conclude that models using a standard 13C pocket, which produces a good match for the main component of s‐process elements in the solar system, overestimate the contribution of the 13C pocket to s‐process nucleosynthesis of titanium found in silicon carbide grains. Although previous studies have suggested that the solar system has a significantly different titanium isotopic composition than the parent stars of silicon carbide grains, we find no compelling evidence that the Sun falls off of the array defined by those stars. We also conclude that the Sun does lie on the low‐metallicity end of the silicon and titanium arrays defined by mainstream silicon carbide grains.  相似文献   

18.
Guy Consolmagno 《Icarus》1979,38(3):398-410
Charged dust grains in a turbulent magnetic field will see a Lorentz force due to the convection of the solar magnetic field past them at the solar wind velocity. Since the sign of this magnetic field is randomly varying, the direction of the force will be random, and the net effect will be to randomly scatter the orbital elements of these particles. The square roots of the mean square change in semimajor axis, inclination, and eccentricity are determined as a function of the particles' original orbital elements. Particles 3 μm in radius and smaller will have their motions strongly perturbed or dominated by Lorentz scattering. This scattering will have an effect comparable to, or greater than, the Poynting-Robertson effect on these particles for time scales comparable to their Poynting-Robertson lifetimes.  相似文献   

19.
Dust grains that formed around ancient stars and in stellar explosions seeded the early solar protoplanetary disk. While most of such presolar grains were destroyed during solar system formation, a fraction of such grains were preserved in primitive materials such as meteorites. These grains can provide constraints on stellar origins and secondary processing such as aqueous alteration and thermal metamorphism on their parent asteroids. Here, we report on the nature of aqueous alteration in the Miller Range (MIL) 07687 chondrite through the analysis of four presolar silicates and their surrounding material. The grains occur in the Fe-rich and Fe-poor lithologies, reflecting relatively altered and unaltered material, respectively. The O-isotopic compositions of two grains, one each from the Fe-rich and Fe-poor matrix, are consistent with formation in the circumstellar envelopes of low-mass Asymptotic Giant Branch (AGB)/Red Giant Branch (RGB) stars. The other two grains, also one each from the Fe-rich and Fe-poor matrix, have O-isotopic compositions consistent with formation in the ejecta of type-II supernovae (SNe). The grains derived from AGB/RGB stars include two polycrystalline pyroxene grains that contain Fe-rich rims. The SNe grains include a polycrystalline Ca-bearing pyroxene and a polycrystalline assemblage consistent with a mixture of olivine and pyroxene. Ferrihydrite is observed in all focused ion beam sections, consistent with parent-body aqueous alteration of the fine-grained matrix under oxidizing conditions. The Fe-rich rims around presolar silicates in this study are consistent with Fe-diffusion into the grains resulting from early-stage hydrothermal alteration, but such alteration was not extensive enough to lead to isotopic equilibration with the surrounding matrix.  相似文献   

20.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号