首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We have observed four low-luminosity active galactic nuclei (AGNs) classified as type 1 Low-Ionization Nuclear Emission-Line Regions (LINERs) with the X-Ray Telescope (XRT) and the Ultraviolet–Optical Telescope (UVOT) onboard Swift , in an attempt to clarify the main powering mechanism of this class of nearby sources. Among our targets, we detect X-ray variability in NGC 3998 for the first time. The light curves of this object reveal variations of up to 30 per cent amplitude in half a day, with no significant spectral variability on this time-scale. We also observe a decrease of ∼30 per cent over 9 d, with significant spectral softening. Moreover, the X-ray flux is ∼40 per cent lower than observed in previous years. Variability is detected in M81 as well, at levels comparable to those reported previously: a flux increase in the hard X-rays (1–10 keV) of 30 per cent in ∼3 h and variations by up to a factor of 2 within a few years. This X-ray behaviour is similar to that of higher luminosity, Seyfert-type objects. Using previous high-angular-resolution imaging data from the Hubble Space Telescope ( HST ), we evaluate the diffuse UV emission due to the host galaxy and isolate the nuclear flux in our UVOT observations. All sources are detected in the UV band, at levels similar to those of the previous observations with HST . The XRT (0.2–10 keV) spectra are well described by single power laws and the UV-to-X-ray flux ratios are again consistent with those of Seyferts and radio-loud AGNs of higher luminosity. The similarity in X-ray variability and broad-band energy distributions suggests the presence of similar accretion and radiation processes in low- and high-luminosity AGNs.  相似文献   

2.
We present the results of concurrent X-ray and optical monitoring of the Seyfert 1 galaxy Mrk 79 over a period of more than 5 yr. We find that on short to medium time-scales (days to a few tens of days) the 2–10 keV X-ray and optical u - and V -band fluxes are significantly correlated, with a delay between the bands consistent with 0 d. We show that most of these variations may be well reproduced by a model where the short-term optical variations originate from reprocessing of X-rays by an optically thick accretion disc. The optical light curves, however, also display long time-scale variations over thousands of days, which are not present in the X-ray light curve. These optical variations must originate from an independent variability mechanism and we show that they can be produced by variations in the (geometrically) thin disc accretion rate as well as by varying reprocessed fractions through changes in the location of the X-ray corona.  相似文献   

3.
We present high spatial resolution X-ray Chandra HRC and HST WFPC2 H α observations of the prototypical infrared-luminous galaxy NGC 6240. The central region of this system shows a remarkably complex morphology, with filaments and loops observed in the optical and X-rays. The total X-ray luminosity is dominated by the extended emission. Both nuclei are clearly detected in the HRC image and both appear to be extended. The energetics of the nuclei imply that the southern nucleus is the more plausible counterpart to the obscured active galactic nucleus. The overall spectral energy distribution of the galaxy is in good agreement with a blend of starburst and AGN components that have similar bolometric luminosities,   L bol∼5×1045 erg s-1  , with the starburst dominating the observed continuum in the near-infrared ( K band), optical and soft X-ray bands.  相似文献   

4.
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.  相似文献   

5.
We present a detailed analysis of high-resolution Chandra observations of the merger system NGC 3256, the most infrared-luminous galaxy in the nearby universe. The X-ray data show that several discrete sources embedded in complex diffuse emission contribute ≳20 per cent of the total emission     in the  0.5–10 keV  energy range). The compact sources are hard and extremely bright and their emission is probably dominated by accretion-driven processes. Both galaxy nuclei are detected with  LX∼3–10×1040 erg s−1  . No evidence is found for the presence of an active nucleus in the southern nucleus, contrary to previous speculation. Once the discrete sources are removed, the diffuse component has a soft spectrum that can be modelled by the superposition of three thermal plasma components with temperatures   kT =0.6  , 0.9 and 3.9 keV. Alternatively, the latter component can be described as a power law with index  Γ∼3  . Some evidence is found for a radial gradient of the amount of absorption and temperature of the diffuse component. We compare the X-ray emission with optical, H α and NICMOS images of NGC 3256 and find a good correlation between the inferred optical/near-infrared and X-ray extinctions. Although inverse Compton scattering could be important in explaining the hard X-rays seen in the compact sources associated with the nuclei, the observed diffuse emission is probably of thermal origin. The observed X-ray characteristics support a scenario in which the powerful X-ray emission is driven solely by the current episode of star formation.  相似文献   

6.
The X-ray-bright Seyfert 1 galaxy III Zw 2 was observed with XMM–Newton in 2000 July. Its X-ray spectrum can be described by a power law of photon index Γ= 1.7 and an extremely broad (FWHM∼ 140 000 km  s−1  ) Fe Kα line at 6.44 keV. The iron line has an equivalent width of ∼800 eV. To study the long-term X-ray behaviour of the source we have analysed 25 yr of data, from 1975 to 2000. There is no evidence of significant intrinsic absorption within the source or of a soft X-ray excess in the XMM or archival data. We do not detect rapid X-ray variability (a few  × 103 s  ) during any of the individual observations; however, on longer time-scales (a few years) the X-ray light curve shows 10-fold flux variations. We infer a black hole mass of  ∼109 M  (from Hβ FWHM) for III Zw 2 which is much higher than some previous estimates.
A comparison of X-ray variability with light curves at other wavelengths over a 25-yr period reveals correlated flux variations from radio to X-ray wavelengths. We interpret the variable radio to optical emission as synchrotron radiation, self-absorbed in the radio/millimetre region, and the X-rays mainly as a result of Compton up-scattering of low-energy photons by the population of high-energy electrons that give rise to the synchrotron radiation.  相似文献   

7.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   

8.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

9.
We report on the first SCUBA detection of a type 2 QSO at   z = 3.660  in the Chandra Deep Field South. This source is X-ray-absorbed, shows only narrow emission lines in the optical spectrum and is detected in the submillimetre: it is the ideal candidate in an evolution scheme for active galactic nuclei (AGN) (e.g. Fabian 1999 ; Page et al. 2004 ) of an early phase corresponding to the main growth of the host galaxy and formation of the central black hole. The overall photometry (from the radio to the X-ray energy band) of this source is well reproduced by the spectral energy distribution (SED) of NGC 6240, while it is incompatible with the spectrum of a type 1 QSO (3C 273) or a starburst galaxy (Arp 220). Its submillimetre (850 μm) to X-ray (2 keV) spectral slope  (αSX)  is close to the predicted value for a Compton-thick AGN in which only 1 per cent of the nuclear emission emerges through scattering. Using the observed flux at 850 μm we have derived a star formation rate of  550–680 M yr−1  and an estimate of the dust mass   M dust= 4.2 × 108 M  .  相似文献   

10.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

11.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

12.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

13.
We explore the nature of X-ray sources with  70 μm  counterparts selected in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) fields: ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/  70 μm  sources in the redshift interval  0.5 < z < 1.3  are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are active galactic nuclei (AGN). Modelling of the optical to far-infrared (IR) spectral energy distribution indicates that most of them (27/28) have a strong starburst component  (>50 M yr−1)  that dominates in the IR. It is found that the X-ray and IR luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/  70 μm  sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/  70 μm  sources have lower specific star formation rates compared to the general  70 μm  population, consistent with AGN feedback moderating the star formation in the host galaxies.  相似文献   

14.
The transient black-hole binary XTE J1118+480 exhibited dramatic rapid variability at all wavelengths which were suitably observed during its 2000 April–July outburst. We examine time-resolved X-ray, ultraviolet, optical and infrared data spanning the plateau phase of the outburst. We find that both X-ray and infrared bands show large amplitude variability. The ultraviolet and optical variability is more subdued, but clearly correlated with that seen in the X-rays. The ultraviolet, at least, appears to be dominated by the continuum, although the lines are also variable. Using the X-ray variations as a reference point, we find that the ultraviolet (UV) variability at long wavelengths occurs later than that at short wavelengths. Uncertainty in the Hubble Space Telescope timing prohibits a determination of the absolute lag with respect to the X-rays, however. The transfer function is clearly not a delta-function, exhibiting significant repeatable structure. For the main signal we can rule out an origin in reprocessing on the companion star – the lack of variation in the lags is not consistent with this, given a relatively high orbital inclination. Weak reprocessing from the disc and/or companion star may be present, but is not required, and another component must dominate the variability. This could be variable synchrotron emission correlated with X-ray variability, consistent with our earlier interpretation of the infrared (IR) flux as due to synchrotron emission rather than thermal disc emission. In fact, the broad-band energy distribution of the variability from IR to X-rays is consistent with expectations of optically thin synchrotron emission. We also follow the evolution of the low-frequency quasi-periodic oscillation in X-rays, UV, and optical. Its properties at all wavelengths are similar, indicating a common origin.  相似文献   

15.
ROSAT X-ray observations of 3CRR radio sources   总被引:1,自引:0,他引:1  
Over half the 3CRR sample of radio galaxies and quasars has been observed in X-rays with ROSAT pointed observations, and we present results from these observations, discussing many of the sources in detail. The improved spatial resolution of ROSAT over earlier missions allows a better separation of the nuclear and extended components of the X-ray emission. We investigate the relationship between nuclear X-ray and core radio luminosity, and show that our results support a model in which every radio galaxy and quasar has a beamed nuclear soft X-ray component directly related to the radio core. We report evidence for rich cluster environments around several powerful quasars. These X-ray environments are comparable to those of high-redshift radio galaxies.  相似文献   

16.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

17.
Steep soft X-ray (0.1–2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe  II emission, large and fast X-ray variability, and a rather steep 2–10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026.   Both objects show similar variations (factor of ∼ 2 in 10 ks), despite a factor of ∼ 10 difference in the 0.5–10 keV luminosity (7.3 × 1043 erg s−1 for PG 1244 + 026 and 6.4 × 1044 erg s−1 for NAB 0205 + 024, assuming isotropic emission, H 0 = 50.0 and q 0 = 0.0).   The X-ray continuum of the two quasars flattens by 0.5–1 going from the 0.1–2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei.   PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centred at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3–0.6 c ).  相似文献   

18.
We present multiwaveband photometric and optical spectropolarimetric observations of the R =15.9 narrow emission-line galaxy R117_A which lies on the edge of the error circle of the ROSAT X-ray source R117. The overall spectral energy distribution of the galaxy is well modelled by a combination of a normal spiral galaxy and a moderate-strength burst of star formation. The far-infrared and radio emission is extended along the major axis of the galaxy, indicating an extended starburst.
On positional grounds, the galaxy is a good candidate for the identification of R117, and the observed X-ray flux is very close to what would be expected from a starburst of the observed far-infrared and radio fluxes. Although an obscured high-redshift QSO cannot be entirely ruled out as contributing some fraction of the X-ray flux, we find no candidates to K =20.8 within the X-ray error box, and so conclude that R117_A is responsible for a large fraction, if not all, of the X-ray emission from R117.
Searches for indicators of an obscured AGN in R117_A have so far proven negative; deep spectropolarimetric observations show no signs of broad lines to a limit of 1 per cent and, for the observed far-infrared and radio emission, we would expect 10 times greater X-ray flux if the overall emission were powered by an AGN. We therefore conclude that the X-ray emission from R117 is dominated by starburst emission from the galaxy R117_A.  相似文献   

19.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

20.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号