首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the green corona rotation rate, during the period 1970–1974, confirms that the differential rotation degree varies systematically through a solar cycle and that the corona rotates in an almost rigid manner before sunspot minimum. During the first two years, 1970–1971, the differential rotation degree, characteristic of high solar activity periods is detected. While during the years of declining activity, 1972–1974, a drastic decrease of the differential rotation degree occurs and the green corona rotates almost rigidly, as the coronal holes observed in the same period. These conclusions are valid only for the rotation of coronal features with lifetime of at least one solar rotation.  相似文献   

2.
A method for investigating the differential rotation of the solar corona using the coronal magnetic field as a tracer is proposed. The magnetic field is calculated in the potential approximation from observational data at the photospheric level. The time interval from June 24, 1976, to December 31, 2004, is considered. The magnetic field has been calculated for all latitudes from the equator to ±75? with a 5? step at distances from the base of the corona 1.0 R to 2.45 R near the source surface. The coronal rotation periods at 14 distances from the solar center have been determined by the method of periodogram analysis. The coronal rotation is shown to become progressively less differential with increasing heliocentric distance; it does not become rigid even near the source surface. The change in the coronal rotation periods with time is considered. At the cycleminimumthe rotation has been found to bemost differential, especially at small distances from the solar center. The change in coronal rotation with time is consistent with the tilt of the solar magnetic equator. The results from the magnetic field are compared with those obtained from the brightness of the green coronal Fe XIV 530.3 nm line. The consistency between these results confirms the reliability of the proposed method for studying the coronal rotation. Studying the rotation of the coronal magnetic field gives hope for the possibility of using this method to diagnose the differential rotation in subphotospheric layers.  相似文献   

3.
A study on the differences of rotation properties, based on the lifetime of coronal features, has been performed for the period 1972–1974. The short-lived component of the green corona associated with solar activity is differentially rotating, while long-lived coronal features persisting more than one synodic rotation period, show little or no differential rotation. These two components coexist at a same latitude within a wide latitude range at least in one of the solar hemispheres.  相似文献   

4.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

5.
The differential rotation of the corona as indicated by coronal holes   总被引:1,自引:0,他引:1  
The rotation of the corona can be determined either directly by using Doppler methods or indirectly by using tracers, i.e., structures within the corona. In this study the rotational characteristics of the corona are determined using coronal holes as tracers, for the period 1978–1991. The coronal data used here are from an atlas of coronal holes mapped in Hei 10830 data. A comparison is made between our results and previous determinations of the coronal rotation rate, e.g., by Sime (1986), using white-light K-coronameter observations, by Timothy, Krieger, and Vaiana (1975), using soft X-ray observations, and by Shelke and Pande (1985) and Navarro-Peralta and Sanchez-Ibarra (1994), using Hei 10830 data. For the atlas of coronal holes used in this study the nature of the coronal hole distributions in number and latitude, in yearly averages, has been determined. These distributions show that at solar minimum the polar coronal holes dominate and the few non-polar holes are confined to a narrow band near the equator. At solar maximum, however, mid-latitude coronal holes dominate, with a large spread in latitudes. Given these distributions we consider the differential rotation data only as an average over a solar cycle. This removes spurious effects caused by having only a small number of coronal holes contributing to the results, or by having a narrow latitude band for the observations, thus limiting the results to that narrow latitude band. By considering these coronal holes as tracers of the differential rotation we show that the mid-latitude corona rotates more rigidly than the photosphere, but still exhibits significant differential rotation, with an equatorial rate of 13.30 ± 0.04° day–1, and at 45° latitude a rate of 12.57 ± 0.13° day–1. These results are comparable, within errors, to the Sime (1986) results which have an equatorial rate of approximately 13.2 ± 0.2° day–1 and a rate of approximately 12.9 ± 0.3° day–1 at 45° latitude.  相似文献   

6.
The characteristics of differential rotation of the solar corona for the period 1976?–?2004 were studied as a function of the distance from the center of the Sun. For this study, we developed a method using the coronal magnetic field as a tracer. The field in a spherical layer from the base of the corona up to the source surface was determined from photospheric measurements. Calculations were performed for 14 heliocentric distances from the base of the corona up to 2.45 \(R_{\odot }\) solar radii (the vicinity of the source surface) and from the equator to \(\pm 75^{\circ }\) of latitude at \(5^{\circ }\) steps. For each day, we calculated three spherical components, which were then used to obtain the field strength. The coronal rotation periods were determined by the periodogram method. The rotation periods were calculated for all distances and latitudes under consideration. The results of these calculations make it possible to study the distribution of the rotation periods in the corona depending on distance, time, and phase of the cycle. The variations in the coronal differential rotation during the time interval 1976?–?2004 were as follows: the gradient of differential rotation decreased with the increase of heliocentric distance; the rotation remaining differential even in the vicinity of the source surface. The highest rotation rates (shortest rotation periods) were recorded at the cycle minimum at small heliospheric distances, i.e. small heights in the corona. The lowest rotation rate was observed at the middle of the ascending branch at large distances. At the minimum of the cycle, the differential rotation is most clearly pronounced, especially at small heliocentric distances. As the distance increases, the differential rotation gradient decreases in all phases. The results based on magnetic data and on the brightness of the coronal green line 530.3 nm Fe xiv used earlier show a satisfactory agreement. Since the rotation of the magnetic field at the corresponding heights in the corona is probably determined by the conditions in the field generation region, an opportunity arises to use this method for diagnostics of differential rotation in the subphotospheric layers.  相似文献   

7.
Ikhsanov  R.N.  Ivanov  V.G. 《Solar physics》1999,188(2):245-258
The space and time distribution properties of solar coronal holes (CH) are investigated. The data of the catalogue UAG-102, supplemented up to 1995, and synoptic H-charts of Solar Geophysical Data are used. It was found that both the polar and equatorial CH can be divided into two subclasses. The properties of time classes are discerned. Statistical weights of the recurrent CH are accounted, which allow to determine the character of rotation of the different classes of CH with more accuracy. It was shown that the equatorial CH with long lifetimes possess differential rotation that is similar to sunspot groups, and the long-living polar CH rotate as a rigid body. A conclusion about the existence of two types of large-scale solar magnetic fields is made.  相似文献   

8.
Obridko  V.N.  Shelting  B.D. 《Solar physics》1999,187(1):185-205
The structure and variations of open field regions (OFRs) are analyzed against the solar cycle for the time interval of 1970–1996. The cycle of the large-scale magnetic field (LSMF) begins in the vicinity of maximum Wolf numbers, i.e. during the polar field reversal. At the beginning of the LSMF cycle, the polar and mid-latitude magnetic field systems are connected by a narrow bridge, but later they evolve independently. The polar field at the latitudes above 60° has a completely open configuration and fills the whole area of the polar caps near the cycle minimum of local fields. At this time, essentially all of the open solar flux is from the polar caps. The mid-latitude open field regions (OFRs) occur at a latitude of 30–40° away from solar minimum and drift slowly towards the equator to form a typical 'butterfly diagram' at the periphery of the local field zone. This supports the concept of a single complex – 'large-scale magnetic field – active region – coronal hole'. The rotation characteristics of OFRs have been analyzed to reveal a near solid-body rotation, much more rigid than in the case of sunspots. The rotation characteristics are shown to depend on the phase of the solar cycle.  相似文献   

9.
An analysis of the rotation of coronal holes (CHs) spanning 18 years was done based on data from theCatalogue of Coronal Holes (Sanchez-Ibarra and Barraza-Paredes, 1992). A differential rotation of CHs is confirmed for the totality of CHs, but a different behavior was found when those were separated as equatorial or isolated, and polar hole extensions, such as in theCatalogue. Isolated CHs show a typical differential rotation, but polar hole extensions display two different types of behavior: a rotation rate below 40° ± 5° of heliographic latitude, increasing to the equator, and a rotation rate above the same heliographic latitude but increasing to the poles. Also discussed here is how this last result agrees with other studies that indicate the mostly rigid rotation of the corona at higher latitudes.  相似文献   

10.
It is known for over two decades now that the rotation of the photospheric magnetic fields determined by two different methods of correlation analysis leads to two vastly differing rotation laws - one the differential and the other rigid rotation. Snodgrass and Smith (2001) reexamining this puzzle show that the averaging of the correlation amplitudes can tilt the final profile in favour of rigid rotation whenever the contribution of the rigidly rotating large-scale magnetic structures (the plumes) to the correlation dominates over that of the differentially rotating small-scale and mesoscale features. We present arguments to show that the large-scale unipolar structures in latitudes >40 deg, which also show rigid rotation (Stenflo, 1989), are formed mainly from the intranetwork magnetic elements (abbreviated as IN elements). We then estimate the anchor depths of the various surface magnetic elements as locations of the Sun's internal plasma layers that rotate at the same rate as the flux elements, using the rotation rates of the internal plasma layers given by helioseismology. We infer that the anchor depths of the flux broken off from the decay of sunspot active regions (the small-scale and mesoscale features that constitute the plumes) are located in the shallow layers close to the solar surface. From a similar comparison with helioseismic rotation rates we infer that the rigid rotation of the large-scale unipolar regions in high latitudes could only be coming from plasma layers at a radial distance of about 0.66–0.68 R from the Sun's centre. Using Stenflo's (1991) ‘balloon man’ analogy, we interpret these layers as the source of the magnetic flux of the IN elements. If so, the IN flux elements seem to constitute a fundamental component of solar magnetism.  相似文献   

11.
We show that the rotation of coronal holes can be understood in terms of a current-free model of the coronal magnetic field, in which holes are the footpoint locations of open field lines. The coronal field is determined as a function of time by matching its radial component to the photospheric flux distribution, whose evolution is simulated including differential rotation, supergranular diffusion, and meridional flow. We find that ongoing field-line reconnection allows the holes to rotate quasi-rigidly with their outer-coronal extensions, until their boundaries become constrained by the neutral line of the photospheric field as it winds up to form stripes of alternating magnetic polarity. This wind-up may be significantly retarded by a strong axisymmetric field component which forces the neutral line to low latitudes; it is also gradually halted by the cross-latitudinal transport of flux via supergranular diffusion and a poleward bulk flow. We conclude that a strong axisymmetric field component is responsible for the prolonged rigid rotation of large meridional holes during the declining phase of the sunspot cycle, but that diffusion and flow determine the less rigid rotation observed near sunspot maximum, when the holes corotate with their confining polarity stripes.  相似文献   

12.
Kane  R.P. 《Solar physics》2002,209(1):207-216
The short-term variation of solar indices, though typically near the solar rotation period of 27 days, can often deviate considerably from 27 days, in a wide range ∼ 19–33 days. The peak locations are within a day or two for all solar indices, indicating that the whole of the solar atmosphere is affected in a similar way. There are no systematic differences between the peaks of the chromosphere and the corona as such, but F10, X-rays, and coronal green line, which have uncertainties about their solar altitudes of origin, do show some differences (earlier peaks) as compared to other indices (chromospheric as well as coronal).  相似文献   

13.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626–1634) and near solar maximum (CR 1668–1678). Together with previous models of open magnetic structures during the declining phase (CR 1601–1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 Å spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 Å spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab.  相似文献   

15.
We have extended our long-term study of coronal holes, solar wind streams, and geomagnetic disturbances through the rising phase of sunspot cycle 21 into the era of sunspot maximum. During 1978 and 1979, coronal holes reflected the influence of differential rotation, and existed within a slowly-evolving large-scale pattern despite the relatively high level of sunspot activity. The long-lived 28.5-day pattern is not produced by a rigidly-rotating quasi-stationary structure on the Sun, but seems to be produced by a non-stationary migratory process associated with solar differential rotation. The association between coronal holes and solar wind speed enhancements at Earth continues to depend on the latitude of the holes (relative to the heliographic latitude of Earth), but even the best associations since 1976 have speeds of only 500–600 km s-1 rather than the values of 600–700 km s-1 that usually occurred during the declining phase of sunspot cycle 20.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

16.
Brajša  R.  Ruždjak  V.  Vršnak  B.  Wöhl  H.  Pohjolainen  S.  Upro  S. 《Solar physics》2000,196(2):279-297
Observations of the Sun performed at 37 GHz with the 14-m radio telescope of the Metsähovi Radio Observatory were analyzed. Rotation velocities were determined, tracing Low Temperature Regions (LTRs) in the years 1979–1980, 1981–1982, 1987–1988, and 1989–1991. Statistical weights were ascribed to the determined rotation velocities of LTRs, according to the number of tracing days. Measured changes of the rotation velocity during the solar activity cycle, as well as a north–south rotation asymmetry, are discussed. The results obtained with and without the statistical weights procedure are compared, and it was found that the statistical significance of the solar differential rotation parameters' changes is higher when the statistical weights procedure is applied. A selective application of the height correction on LTR's positions has not removed the cycle-related changes nor the north–south asymmetry of the solar rotation measured tracing LTRs. So, projection effects cannot explain these changes. The differential rotation of LTRs is more rigid than the differential rotation obtained tracing magnetic features and measuring Doppler shifts, which can be explained by the association rate of the LTRs' positions with rigidly rotating `pivot points'. The observed cycle-related changes and the north–south asymmetry of the rotation velocity of LTRs are consistent with the cycle-related changes and the north–south asymmetry of the association rate between LTRs and pivot points.  相似文献   

17.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2001,200(1-2):75-89
We present data obtained from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We compare the rotation of the white-light corona as seen during a period approaching the maximum of the solar 11-year activity cycle with that observed in a previous study made at solar minimum (Lewis et al., 1999). We find no fundamental difference in the rotation characteristics and again find the white-light corona to be radially rigid. The rotation has been observed at altitudes from 2.5 R to beyond 15 R and as predicted in the previous study, the greater level of complexity in the coronal structures and their relatively rapid evolution has not allowed periods to be determined as accurately as at solar minimum. Our best estimate of the mean synodic rotation period during the period of study (7 March 1999 to 6 March 2000) is 27.5±0.3 days. This is consistent with the relatively small scale structures associated with the surface activity imposing their rotation signature on an otherwise axisymmetric background corona. The short-lived nature of the small scale coronal morphologies at this epoch has made a thorough analysis of the latitudinal variation difficult, although we again find some evidence for the white light corona's increased latitudinal rigidity when compared to the underlying photosphere. However, we again note how projection effects create difficulties in confirming the exact degree of rigidity in the corona at these altitudes and a very simple coronal model is used to highlight how the appearance of lower latitude features in projection can contaminate the coronal signal observed at other latitudes. We also note evidence for a sudden and apparently fundamental change to the global coronal morphology on the approach to solar maximum and suggest this may represent the time beyond which the classical solar dipole ceases to dominate the coronal field.  相似文献   

18.
The time variations in the latitudinal distribution of the rotation of active regions and coronal holes are investigated. The synoptic maps obtained from observations in the He I 1083 nm line at Kitt Peak Observatory over almost three solar cycles are used as observational data. A Fourier analysis of the time series constructed from synoptic maps has yielded the following results. The rotation of active regions differs significantly from the rotation of coronal holes in all parameters: the set of the most significant rotation periods, their latitudinal distribution, and time variations. The rotation of active regions and coronal holes is characterized by variations from cycle to cycle, a time-varying north-south asymmetry. The power spectra for consecutive cycles of solar activity differ significantly for both epochs of high activity and minima. Analysis of the total power of the spectra within four selected intervals of periods from 21 to 33 days has shown that the total power is highest in the intervals of periods 24–27 and 27–30 days. This is valid for both active regions and coronal holes. The correlation between the total powers in the above intervals of periods changes noticeably with time. Long-lived or successively appearing active regions with rotation periods in the range 24–30 days are typical of the time of a sharp decrease in the total equivalent width of active regions. This includes not only the decline time of the 11-year cycles, but also the minima between recurrent activity maxima during one cycle. A predominance of long-lived coronal holes as their total equivalent width decreases is noticeable for coronal holes with rotation periods in the interval 30–33 days. All of the above results suggest that the rotation of solar structures is determined mainly by the subphotospheric sources of specific structures, not by the rotation of the main volumes of solar plasma of the quiet Sun.  相似文献   

19.
Full-disc full-resolution (FDFR) solar images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) were used to analyse the centre-to-limb function and latitudinal distribution of coronal bright points. The results obtained with the interactive and the automatic method, as well as for three subtypes of coronal bright points for the time period 4 June 1998 to 22 May 1999 are presented and compared. An indication of a two-component latitudinal distribution of coronal bright points was found. The central latitude of coronal bright points traced with the interactive method lies between 10 and 20. This is closer to the equator than the average latitude of sunspots in the same period. Possible implications for the interpretation of the solar differential rotation are discussed. In the appendix, possible differences between the two solar hemispheres are analysed. More coronal bright points were present in the southern solar hemisphere than in the northern one. This asymmetry is statistically significant for the interactive method and not for the automatic method. The visibility function is symmetrical around the central meridian.  相似文献   

20.
W. M. Adams 《Solar physics》1976,47(2):601-605
An interesting aspect of solar rotation is the fact that coronal holes seem to exhibit little or no differential rotation. We set out to investigate the question of whether or not the photospheric magnetic fields underlying coronal holes also exhibit reduced differential rotation. In order to accomplish this we measured the daily positions of filaments and plages surrounding a large coronal hole that lasted for several disk passages. The resulting differential rotation curve was considerably flatter than the standard curve for long-lived filaments and was in remarkably good agreement with the curve found for the overlying coronal hole itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号