首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We present CCD photometric observations of 23 main-belt asteroids, of which 8 have never been observed before; thus, the data of these objects are the first in the literature. The majority showed well-detectable light variations, exceeding 0m1. We have determined synodic periods for 756 Lilliana (936), 1270 Datura (34), 1400 Tirela (1336), 1503 Kuopio (998), 3682 Welther (359), 7505 Furushu (414) and 11436 1969 QR (123), while uncertain period estimates were possible for 469 Argentina (123), 546 Herodias (104) and 1026 Ingrid (53). The shape of the lightcurves of 3682 Welther changed on a short time-scale and showed dimmings that might be attributed to eclipses in a binary system. For the remaining objects, only lower limits of the periods and amplitudes were concluded.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Conventional meteoroid theory assumes that the dominant mode of ablation (which we will refer to as thermal ablation) is by evaporation following intense heating during atmospheric flight. Light production results from excitation of ablated meteoroid atoms following collisions with atmospheric constituents. In this paper, we consider the question of whether sputtering may provide an alternative disintegration process of some importance. For meteoroids in the mass range from 10-3 to and covering a meteor velocity range from 11 to , we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal ( mass density), cometary () and porous cometary () meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were use in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a porous meteoroid at will lose nearly 51% of its mass by sputtering, while a asteroidal meteoroid at will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. We discuss methods to observationally test the predictions of these computations. A search for early gradual tails on meteor light curves prior to the commencement of intense thermal ablation possibly represents the most promising approach. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars. The heights of ablation and decelerations observed using these systems may provide evidence for the importance of sputtering.  相似文献   

10.
11.
We have obtained full-disk spatially resolved spectra of the Venus nightside at near-infrared wavelengths during July 2007 using the Anglo-Australian Telescope and Infrared Imager and Spectrograph 2 (IRIS2). The data have been used to map the intensity and rotational temperature of the O2(a1Δg) airglow band at . The temperatures agree with those obtained in earlier IRIS2 observations and are significantly higher than expected from the Venus International Reference Atmosphere (VIRA) profile. We also report the detection of the corresponding ν=0-1O2 airglow band at with a similar spatial distribution to the ν=0-0 band. Observations in the thermal window have been used to image surface topography using two different methods of cloud correction. We have also obtained images that can be used to study cloud motion.  相似文献   

12.
We detected a volcanic outburst in Io's northern hemisphere on 17 April 2006 with the OSIRIS imaging spectrometer at Keck, and confirmed it was still erupting on 2 June 2006. The eruption, which we name 060417A, was located in Tvashtar Paterae, ∼100 km southeast of the February 2000 eruption. The observed temperature was , over a surface area of , providing a total thermal output of .  相似文献   

13.
The capture of arbitrarily shaped interstellar dust in the Solar System is investigated. Electromagnetic radiation and gravitational forces of the Sun and Lorentz force generated by interplanetary magnetic field are considered. The capture conditions appear to be very sensitive to the particle shape. Non-spherical particles as well as their spherical equivalents are captured only when they are moving initially in the vicinity of ecliptic plane. Capture of non-charged non-spherical dust typically occurs in the region , where RSun is solar radius and impact parameter b is defined as the smallest distance between the particle and the Sun if no forces existed. In contrast, charged particles are typically captured at b>150 RSun. The total amount of captured non-spherical sub-micron particles differs significantly from the corresponding amount of spherical dust grains. However, both amounts are comparable in the micron-sized range. It is shown that a certain mass of captured non-spherical particles may survive in the Solar System, while captured spherical ones hit the Sun or sublimate in its vicinity. Only a negligible amount of spherical particles can survive. Consideration of solar wind within around of yields that 20% of the captured non-spherical particles of the effective radius survive; the corresponding percentage for particles of the radius is 7%. The total mass of the surviving charged particles is about two orders of magnitude larger than the mass of the surviving non-charged particles. As a result, the sub-micron-sized particles are candidates to contribute to the density increase of the circumsolar dust cloud.  相似文献   

14.
We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites—four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at , comparable to the mean collision speed in the main-belt. Some of the ∼5 to debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles ( up to in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles , a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that the average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies.We determined the threshold collisional specific energy for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target.These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.  相似文献   

15.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   

16.
17.
18.
We present the results of observational campaigns of asteroids performed at Asiago Station of Padova Astronomical Observatory and at M.G. Fracastoro Station of Catania Astrophysical Observatory, as part of the large research programme on Solar System minor bodies undertaken since 1979 at the Physics and Astronomy Department of Catania University. Photometric observations of six Main-Belt asteroids (27 Euterpe, 173 Ino, 182 Elsa, 539 Pamina, 849 Ara, and 984 Gretia), one Hungaria (1727 Mette), and two Near-Earth Objects (3199 Nefertiti and 2004 UE) are reported. The first determination of the synodic rotational period of 2004 UE was obtained. For 182 Elsa and 1727 Mette the derived synodic period of 80.23±0.08 and , respectively, represents a significant improvement on the previously published values. For 182 Elsa the first determination of the H-G magnitude relation is also presented.  相似文献   

19.
Meteoric ions in the atmosphere of Mars   总被引:1,自引:0,他引:1  
  相似文献   

20.
We have obtained numerically integrated orbits for Saturn's coorbital satellites, Janus and Epimetheus, together with Saturn's F-ring shepherding satellites, Prometheus and Pandora. The orbits are fit to astrometric observations acquired with the Hubble Space Telescope and from Earth-based observatories and to imaging data acquired from the Voyager spacecraft. The observations cover the 38 year period from the 1966 Saturn ring plane crossing to the spring of 2004. In the process of determining the orbits we have found masses for all four satellites. The densities derived from the masses for Janus, Epimetheus, Prometheus, and Pandora in units of g cm−3 are , , , and , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号