首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the Low-Frequency Array (LOFAR)(Planet. Space Sci. (2004) these proceedings) frequencies (HF/VHF), extraterrestrial radiation experiences substantial propagation delay as it passes through the ionosphere. The adaptive calibration technique to be employed by LOFAR will use signals from many known bright radio sources in the sky to estimate and remove the effects of this delay. This technique will operate along many simultaneous lines of sight for each of the stations. Measurements will be made on time scales of seconds or shorter, and with accuracies corresponding to path length variations of 1 cm or less. Tomographic techniques can be used to invert the thousands of changing and independent total electron content (TEC) measurements produced by LOFAR into three-dimensional electron density specifications above the array. These specifications will measure spatial and time scales significantly smaller and faster than anything currently available. These specifications will be used to investigate small-scale ionospheric irregularities, equatorial plasma structures, and ionospheric waves. In addition, LOFAR will improve the understanding of the solar drivers of the ionosphere by simultaneously measuring the solar radio bursts and the TEC. Finally, LOFAR, which will be situated to observed the galactic plane, will make continuous, high-resolution observations of the low-latitude ionosphere, an important but under-observed region. This paper will look at LOFAR as an ionospheric probe including comparisons to other ionospheric probes as well as possible methods of operation to optimize ionospheric measurements.  相似文献   

2.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

3.
This study results from a coordinated experiment involving ionospheric observations of Faraday rotation between a geostationary satellite and three ground based receivers at Aberystwyth and Bournemouth in the U.K. and Lannion, France, together with incoherent scatter observations at St. Santin-Nancay, France.Quasi-periodic variations of electron content observed simultaneously at the three stations are interpreted in terms of medium scale gravity waves travelling in the ionospheric F-region. Characteristics of these waves are derived by means of a cross-correlation technique.A reverse ray tracing computation, using data on the neutral atmosphere and neutral wind stratification from the incoherent scatter observations, has been used in an attempt to locate the sources of these waves.The results show that some of the waves are almost certainly generated above 100 km altitude, probably by auroral phenomena, while the others could be produced near ground level by meteorological sources. The reverse ray tracing indicates that the latter sources are in general located in a geographic area in the vicinity of a weather disturbance. A production mechanism for these waves is proposed involving ageostrophic perturbations of the neutral wind in a jet stream.  相似文献   

4.
Magnetospheric Alfvén waves are reflected by the ionosphere. We investigate the effect of horizontally varying ionospheric conductivity on the process of Alfvén wave reflection. Four idealised ionospheric models are considered in detail. We find that the reflection process is strongly dependent on the orientation of the wave electric field vector with respect to the boundary between high and low conductivities, and under certain conditions subsidiary Alfvén waves are generated. The field-aligned currents in the subsidiary Alfvén waves serve to close divergent horizontal currents resulting from the non-uniform ionospheric conductivity. The implications for ground-based pulsation studies are discussed.  相似文献   

5.
We look at time-dependent normal mode solutions to the Alfven wave equation in a uniform magnetic field, between planar ionospheres. In particular, the effect of sharp gradients in ionospheric conductivity on the spatial and temporal structure of the waves is considered. We show that the electric field of the wave must always be perpendicular to any conductivity discontinuities present, and that this is achieved by the generation of circularly polarized Alfven waves at the discontinuity. The results are applied to an ionospheric strip of high conductivity; this being relevant to Pi2s.  相似文献   

6.
T.V. Gudkova  Ph. Lognonné 《Icarus》2011,211(2):1049-1065
Meteoroid impacts are important seismic sources on the Moon. As they continuously impact the Moon, they are a significant contribution to the lunar micro-seismic background noise. They also were associated with the most powerful seismic sources recorded by the Apollo seismic network. We study in this paper the largest impacts. We show that their masses can be estimated with a rather simple modeling technique and that high frequency seismic signals have reduced amplitudes due to a relatively low (about 1 s) corner frequency resulting from the duration of the impact process and the crater formation. If synthetic seismograms computed for a spherical model of the Moon are unable to match the waveforms of the observations, they nevertheless provide an approximate measure of the energy of seismic waves in the coda. The latter can then be used for an estimation of the mass of the impactors, when the velocity of the impactor is known. This method, for the artificial impacts of the LM and SIVB Apollo upper stages, allows us to retrieve the mass within 20% of relative error. The estimated mass of the largest impacts observed during the 7 years of activity of the Apollo seismic network provides an explanation for the non-detection of surface waves on the seismograms. The specifications of future Moon seismometers, in order to provide the detection of surface waves, are given in conclusion.  相似文献   

7.
Abstract— The sound production from the Morávka fireball has been examined in detail making use of infrasound and seismic data. A detailed analysis of the production and propagation of sonic waves during the atmospheric entry of the Morávka meteoroid demonstrates that the acoustic energy was produced both by the hypersonic flight of the meteoroid (producing a cylindrical blast wave) and by individual fragmentation events of the meteoroid, which acted as small explosions (producing quasispherical shock waves). The deviation of the ray normals for the fragmentation events was found to be as much as 30° beyond that expected from a purely cylindrical line source blast. The main fragmentation of the bolide was confined to heights above 30 km with a possible maximum in acoustic energy production near 38 km. Seismic stations recorded both the direct arrival of the airwaves (the strongest signal) as well as air‐coupled P‐waves and Rayleigh waves (earlier signals). In addition, deep underground stations detected the seismic signature of the fireball. The seismic data alone permit reconstruction of the fireball trajectory to a precision on the order of a few degrees. The velocity of the meteoroid is much less well‐determined by these seismic data. The more distant infrasonic station detected 3 distinct signals from the fireball, identified as a thermospheric return, a stratospheric return, and an unusual mode propagating through the stratosphere horizontally and then leaking to the receiver.  相似文献   

8.
It is suggested that Pi ULF waves are generated from magnetosphere-ionosphere current systems. This current system is modeled by an R (resistance), C (capacitance) and L (inductance) circuit loop in which R = R(t). We studied three cases of modification of ULF waves by variations in ionospheric conductivity: (1) ω ? ω', (2) ω ≈ ω' and (3) ω ? ω', where ω and ω' are the frequency of the driving electric field and ionospheric conductivity variations, respectively, assuming that both variations are sinusoidal. The characteristics of the modification are very different in these three cases. In case 1, the envelope of the ULF wave intensity correlates with the variations in ionospheric conductivity. In case 2, the wave form of the ULF waves is slightly modified from a sinusoidal wave. In case 3, high frequency components are generated in the ULF wave form due to rapid oscillations in ionospheric resistance. We present observational evidence for the existence of the three types of modifications.  相似文献   

9.
A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found to the problem, for a distribution of the plasma parameters typical of the Earth's plasmasphere. The solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main components of the field of registered standing SMS waves are the plasma oscillations along magnetic field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which should result in precipitation of the background plasma particles. This may be accompanied by ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.  相似文献   

10.
We analyze large-scale H-alpha movies of the large spot group of Sept. 13–26, 1963, together with radio, ionospheric and magnetic field data as well as white light pictures. The evolution of the group and associated magnetic fields is followed, and the positions of solar flares relative to the fields are noted, along with their morphology. Although the magnetic field is deformed in time, characteristic field structures may be traced through the deformation as the seat of recurrent homologous flares.We find that most flares are homologous, and some are triggered by disturbances elsewhere in the region. We note events produced by surges falling back to the surface, and one flare initiated by a bright bead seen to fly across the region. In almost every case of an isolated type III radio burst, a corresponding H-alpha brightening could be found, but not all flares produced bursts. Flares close to the sunspots are most likely to produce radio bursts. Flare surface waves in the region all travel out to the west, because of more open magnetic field structure there. In one case (Sept. 25) a wave is turned back by the closed field structure to the east.In almost all cases the time association of radio or ionospheric events is with the beginning of the flare or with the flash phase.Several morphological classes of flares are noted as recurrent types.  相似文献   

11.
We discuss the possibility of exciting whistler mode waves (WMWs) in the Earth's ionosphere, by using two high frequency beams of electromagnetic waves (f1f2) suitably orientated to the geomagnetic field Ho, so that a non-linear resonant interaction can take place in the natural ionospheric plasma, approximately at the altitude of the F2 maximum electron density. Within the limitations imposed by ionospheric inhomogeneities in the interaction region, it should be possible to excite a WMW which propagates along a predetermined direction, e.g. parallel to Ho.

If we assumef1 andf2 to be approx 30 MHz (i.e. well above the ionospheric plasma frequency), this method would make it possible to select and vary the frequency range of the excited WMW up to a few hundreds kHz without substantial alterations to the high frequency transmitting system.

Since the two beams should form an angle close to 90° to the direction of propagation of the WMW, this technique may prove particularly suitable for active wave experiments at low geomagnetic latitudes, where the geometry of the geomagnetic field limits the feasibility of direct wave injection experiments.

Using the results of theoretical calculations of the three wave coupling coefficients, it will be shown that the transmitters required to produce WMWs with field strengths comparable to that of naturally occurring strong whistlers are substantial, but feasible.  相似文献   


12.
The identification of magnetic, electric and electromagnetic (EM) precursory signals related to volcanic activities and earthquakes is still a matter of debate. Some examples are now well established, but they are often based on a few parameters recorded on sparse equipments and with no multi-disciplinary approach. Demeter program takes into account a more complete approach of EM phenomena related to volcanic eruptions and earthquakes, by combining both ground-based and satellite EM monitoring, from direct current to several kilohertz, i.e. from ULF, ELF to VLF frequency domains.The research program stands in two parts: one is the identification of EM signals at the satellite altitude and the other consists in detailed studies in a few pilot sites on the ground. Two main test sites have been considered: La Fournaise volcano in Réunion Island and the seismogenic Corinth rift in Greece. Both sites allow for performing EM studies in a multi-disciplinary environment.La Fournaise volcano erupts on average two times a year. The self-recording Demeter EM station is composed of three modules measuring the components of the magnetic and electric fields in three different frequency domains: DC to 0.5 Hz, 0.0033-160 Hz and 8-10 kHz. Preliminary observations made during the May 2003 eruption show that electric and magnetic signals appeared before the eruption. Some signals present sharp step-like variations, with amplitudes up to several hundreds mV per km and a few hour duration, followed by periods with a higher spectral frequency content. The frequency of these signals can be of several tens of Hz.The Corinth rift is a highly seismic area, frequently affected by seismic swarms. In 2004 the region has experienced tens of earthquakes of magnitude less than 4.6. A Demeter station has been set up on the Trizonia Island along the northern mainland coast, where a 30 km long seismic gap has been identified. The station is composed of two modules recording the three components of the magnetic field and the two horizontal components of the electric field in the ULF and ELF-VLF frequency bands. The audiomagnetotelluric soundings show that the station is close to a regional conductive fault connected to the sea. The first 4 months of observation clearly show that 29 earthquakes, even of low magnitude (M?2.8), occurring at less than 140 km of distance of the station, have generated electric signals when the seismic waves have passed the EM station. For a given magnitude of the earthquake, the energy of the electric signal is independent of the distance between the focal source and the EM station, which points out local electric source mechanisms. The greater the magnitude of the earthquake, the greater is the energy of the electric signal is. The co-seismic electric signals have the same morphology as that of the passing seismic wave, and there is no noticeable time delay between the electric and the seismic signals. This simultaneity between the seismic and the electric signal is best explained by the generation of an electrokinetic effect due to the passage of the seismic wave through the seawater-saturated ground.  相似文献   

13.
Using plasma parameters from a typical stormtime ionospheric energy balance model, we have investigated the effects of plasma turbulence on the auroral magnetoplasma. The turbulence is assumed to be comprised of electrostatic ion cyclotron waves. These waves have been driven to a nonthermal level by a geomagnetic field-aligned, current-driven instability. The evolution of this instability is shown to proceed in two stages and indicates an anomalous increase in field-aligned electrical resistivity and cross-field ion thermal conductivity as well as a decrease in electron thermal conductivity along the geomagnetic field. In addition, this turbulence heats ions perpendicular to the geomagnetic field and hence leads to a significant ion temperature anisotropy.  相似文献   

14.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

15.
16.
With the advent of long duration incoherent scatter radar experiments measuring ionospheric plasma convection over a wide range of latitudes and at all local times, the mapping and study of the spatial and temporal distribution of electric fields within the magnetosphere becomes possible. We consider the problems of mapping the ionospheric electrostatic potential distribution into the magnetosphere under the assumption that magnetic field lines are electrostatic equipotentials. We address the practical problem of developing a mapping technique which can adequately project ionospheric observations, acquired at different geographic longitudes, into the magnetosphere. The mapping must include the effects of a magnetotail when considering auroral latitudes and is a function of diurnal and seasonal effects and is ionospheric longitude dependent. Mapping observed ionospheric potential distributions into the magnetosphere yields parameters such as: the distribution of electric fields in the magnetosphere, the cross tail potential, the location of plasmapause, the local time of the ‘stagnation’ bulge region and the gradients of the electric field in the vicinity of the plasmapause.  相似文献   

17.
The nightglow observations of OI 630.0 nm emission carried out from low latitude station Kolhapur using All Sky Imager (ASI) with \(140^{\circ}\) field of view (FOV) for the month of April 2011 are used. The images were processed to study the field aligned irregularities often called as equatorial plasma bubbles (EPBs). The present study focuses on the occurrence of scintillation during the traversal of EPBs over ionospheric pierce point (IPP). Here we dealt with the depletion level (depth) of the EPB structures and its effect on VHF signals. We compared VHF scintillation data with airglow intensities at Ionospheric pierce point (IPP) from the same location and found that the largely depleted EPBs make stronger scintillation. From previous literature, it is believed that the small scale structures are present near the steeper walls of EPBs which often degrades the communication, the analysis presented in this paper confirms this belief.  相似文献   

18.
电离层掩星数据现已成为电离层观测数据的重要来源,对掩星数据的反演研究一直是掩星研究的热点.传统采用的改正TEC(1btal Electron Content)的Abel变换反演法为线性反演法,它会把测量误差带入反演结果中.为改善反演效果受测量误差的影响,引入两种非线性的反演方法一正则化和正则最大熵反演法.随后设计模拟试验,对3种方法进行验证、比较,得到正则最大熵反演法可以很好地减小测量误差的影响.  相似文献   

19.
Measured direction of arrival variations of 8 MHz signals along a path nearly parallel to the direction of travel of a large-scale travelling ionospheric disturbance of polar origin are compared with those computed by ray tracing through an analytical model for the disturbance deduced from simultaneous ionospheric observations. The results of the comparison and the wide geographic extent of the disturbance suggest the feasibility of using remotely monitored observations of such disturbances.  相似文献   

20.
Seismology of the solar atmosphere   总被引:1,自引:0,他引:1  
We describe a new instrument for seismically probing the properties of the Sun's lower atmosphere, and present some first results from an observational campaign carried out at the geographic South Pole during the austral summer of 2002/2003. A preliminary analysis of the data (simultaneous, high-cadence observations of the velocity signals from the photosphere and low chromosphere) shows that the well-known suppression of acoustic power in regions of strong magnetic field, and enhancement of high-frequency power around active regions (acoustic halos), are both consistent with a spreading out of the magnetic field lines with increasing height in the atmosphere. The data have also revealed some unexpected wave behavior. First, evanescent-like waves are found at frequencies substantially above the acoustic cut-off frequency in regions of intermediate magnetic field. Second, upward- and downward-propagating waves are detected in areas of strong magnetic field such as sunspots and plage: even at frequencies below the acoustic cut-off frequency. Third, the wave behavior in regions of strong magnetic field can change over periods of a few hours from propagating to evanescent. While we have no concrete explanation for the first two results, the latter result opens up the question of whether sound waves are involved in short-term events such as flares or CME's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号