首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
3.
4.
5.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

6.
7.
8.
We present the results of a study of galaxy activity in two merging binary clusters (A168 and A1750) using the Sloan Digital Sky Survey (SDSS) data supplemented with the data in the literature. We have investigated the merger histories of A168 and A1750 by combining the results from a two-body dynamical model and X-ray data. In A168, two subclusters appear to have passed each other and to be coming together from the recent maximum separation. In A1750, two major subclusters appear to have started interaction and to be coming together for the first time. We find an enhanced concentration of the galaxies showing star formation (SF) or active galactic nuclei (AGN) activity in the region between two subclusters in A168, which were possibly triggered by the cluster merger. In A1750, we do not find any galaxies with SF/AGN activity in the region between two subclusters, indicating that two major subclusters are in the early stage of merging.  相似文献   

9.
The work compiles a correlated study of a gravitational quasi equilibrium thermodynamic approach for establishing and signifying a unique behavior of the cosmological entropy and phase transitions in an expanding Universe. On the basis of prescribed boundary conditions for the cluster temperature a relation for the intra‐cluster medium (ICM) of galaxy clusters has been derived. A more productive and signifying approach of the correlation functions used for galaxy clustering phenomena shows a unique behavior of the entropy change where a phenomenon known as the gravitational phase transition occurs. This unique behavior occurs with a symmetry breaking from mild clustering to low clustering and from mild clustering to high clustering which differs from a normal symmetry breaking in material sciences. We also derive results for the specific latent heat associated with the phase transitions of 3.20 Tc and 0.55 Tc for the mildly clustered phase to the low clustered phase and from the mildly clustered phase to the highly clustered phase, respectively. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Several recent studies have shown that the star cluster initial mass function (CIMF) can be well approximated by a power law, with indications for a steepening or truncation at high masses. This contribution considers the evolution of such a mass function due to cluster disruption, with emphasis on the part of the mass function that is observable in the first ∼1 Gyr. A Schechter type function is used for the CIMF, with a power-law index of −2 at low masses and an exponential truncation at M *. Cluster disruption due to the tidal field of the host galaxy and encounters with giant molecular clouds flattens the low-mass end of the mass function, but there is always a part of the 'evolved Schechter function' that can be approximated by a power law with index −2. The mass range for which this holds depends on age, τ, and shifts to higher masses roughly as  τ0.6  . Mean cluster masses derived from luminosity-limited samples increase with age very similarly due to the evolutionary fading of clusters. Empirical mass functions are, therefore, approximately power laws with index −2, or slightly steeper, at all ages. The results are illustrated by an application to the star cluster population of the interacting galaxy M51, which can be well described by a model with   M *= (1.9 ± 0.5) × 105 M  and a short (mass-dependent) disruption time destroying M * clusters in roughly a Gyr.  相似文献   

11.
We present internal surface brightness profiles, based on Hubble Space Telescope /ACS imaging in the F 606 W bandpass, for 131 globular cluster (GC) candidates with luminosities   L ≃ 104–3 × 106 L  in the giant elliptical galaxy NGC 5128. Several structural models are fitted to the profile of each cluster and combined with mass-to-light ratios ( M / L values) from population-synthesis models, to derive a catalogue of fundamental structural and dynamical parameters parallel in form to the catalogues recently produced by McLaughlin & van der Marel and by Barmby et al. for GCs and massive young star clusters in Local Group galaxies. As part of this, we provide corrected and extended parameter estimates for another 18 clusters in NGC 5128, which we observed previously. We show that, like GCs in the Milky Way and some of its satellites, the majority of globulars in NGC 5128 are well fitted by isotropic Wilson models, which have intrinsically more distended envelope structures than the standard King lowered isothermal spheres. We use our models to predict internal velocity dispersions for every cluster in our sample. These predictions agree well in general with the observed dispersions in a small number of clusters for which spectroscopic data are available. In a subsequent paper, we use these results to investigate scaling relations for GCs in NGC 5128.  相似文献   

12.
13.
14.
15.
16.
The 'algorithm driven by the density estimate for the identification of clusters' ( DEDICA ) is applied to the A3558 cluster complex in order to find substructures. This complex, located at the centre of the Shapley Concentration supercluster, is a chain formed by the ACO clusters A3556, A3558 and A3562 and the two poor clusters SC 1327-312 and SC 1329-313. We find a large number of clumps, indicating that strong dynamical processes are active. In particular, it is necessary to use a fully three-dimensional sample (i.e. using the galaxy velocity as third coordinate) in order also to recover the clumps superimposed along the line of sight. Even though a large number of detected substructures was already found in a previous analysis, this method is more efficient and faster when compared with a wide battery of tests, and permits the direct estimate of the detection significance. Almost all subclusters previously detected by the wavelet analyses found in the literature are recognized by DEDICA . On the basis of the substructure analysis, we also briefly discuss the origin of the A3558 complex by comparing two hypotheses: (i) the structure is a cluster–cluster collision seen just after the first core–core encounter; or (ii) this complex is the result of a series of incoherent group–group and cluster–group mergings, focused in that region by the presence of the surrounding supercluster. We studied the fraction of blue galaxies in the detected substructures and found that the bluest groups reside between A3562 and A3558, i.e. in the expected position for the scenario of cluster–cluster collision.  相似文献   

17.
We present an analysis of BeppoSAX observations of three clusters of galaxies that are amongst the most luminous in the Universe: RXJ1347−1145, Zwicky 3146 and Abell 2390. Using data from both the Low Energy (LECS) and Medium Energy (MECS) Concentrator Spectrometers, and a joint analysis with the Phoswich Detection System (PDS) data above 10 keV, we constrain, with a relative uncertainty of between 7 and 42 per cent (90 per cent confidence level), the mean gas temperature in the three clusters. These measurements are checked against any possible non-thermal contribution to the plasma emission and are shown to be robust.
We confirm that RXJ1347−1145 has a gas temperature that lies in the range between 13.2 and 22.3 keV at the 90 per cent confidence level, and is larger than 12.1 keV at 3 σ level. The existence of such a hot galaxy cluster at redshift of about 0.45 implies an upper limit on the mean mass density in the Universe, Ωm, of 0.5.
Combining the BeppoSAX estimates for gas temperature and luminosity of the three clusters presented in this work with ASCA measurements available in the literature, we obtain a slope of 2.7 in the L – T relation once the physical properties are corrected from the contamination from the central cooling flows.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号