首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Erich Karkoschka 《Icarus》2011,215(2):759-773
The analysis of all suitable images taken of Neptune with the Wide Field Planetary Camera 2 on the Hubble Space Telescope between 1994 and 2008 revealed the following results. The activity of discrete cloud features located near Neptune’s tropopause remained roughly constant within each year but changed significantly on the time scale of ∼5 years. Discrete clouds covered 1% of the disk on average, but more than 2% in 2002. The other ∼99% of the disk probed Neptune’s hazes at lower altitudes. At red and near-infrared wavelengths, two dark bands around −70° and 10° latitude were perfectly steady and originated in the upper two scale heights of the troposphere, either by decreased haze opacity or by an increased methane relative humidity. At blue wavelengths, a dark band between −60° and −30° latitude was most obvious during the early years, caused by dark aerosols below the 3-bar level with single scattering albedos reduced by ∼0.04, and this contrast was constant between 410 and 630 nm wavelength. The dark band decayed exponentially with a time constant of 5 ± 1 years, which can be explained by settling of the dark aerosols at a rate of 1 bar pressure difference per year. The other latitudes brightened with the same time constant but lower amplitudes. The only exception was a darkening event in the 15-30° latitude region between 1994 and 1996, which coincides with two dark spots observed in the same region during the same time period, the only dark spots seen since Voyager. The dark aerosols had a similar latitudinal distribution as the discrete clouds near the tropopause, although both were separated by four scale heights. Photometric analysis revealed a phase coefficient of 0.0028 ± 0.0010 mag/deg for the 0-2° phase-angle range observable from Earth. Neptune’s sub-Earth latitude varied by less than 3° throughout the observation period providing a data set with almost constant viewing geometry. The trends observed up to 2008 continued into 2010 based on images taken with the Wide Field Camera 3.  相似文献   

2.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

3.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

4.
The three-dimensional structure of Saturn's intense equatorial jet from latitudes 8° N to 20° S is revealed from detailed measurements of the motions and spectral reflectivity of clouds at visible wavelengths on high resolution images obtained by the Cassini Imaging Science Subsystem (ISS) in 2004 and early 2005. Cloud speeds at two altitude levels are measured in the near infrared filters CB2 and CB3 matching the continuum (effective wavelengths 750 and 939 nm) and in the MT2 and MT3 filters matching two methane absorption bands (effective wavelengths 727 and 889 nm). Radiative transfer models in selective filters covering an ample spectral range (250-950 nm) require the existence of two detached aerosol layers in the equator: an uppermost thin stratospheric haze extending between the pressure levels ∼20 and 40 mbar (tropopause level) and below it, a dense tropospheric haze-cloud layer extending between 50 mbar and the base of the ammonia cloud (between ∼1 and 1.4 bar). Individual cloud elements are detected and tracked in the tropospheric dense haze at 50 and 700 mbar (altitude levels separated by 142 km). Between latitudes 5° N and 12° S the winds increase their velocity with depth from 265 m s−1 at the 50 mbar pressure level to 365 m s−1 at 700 mbar. These values are below the high wind speeds of 475 m s−1 measured at these latitudes during the Voyager era in 1980-1981, indicating that the equatorial jet has suffered a significant intensity change between that period and 1996-2005 or that the tracers of the flow used in the Voyager images were rooted at deeper levels than those in Cassini images.  相似文献   

5.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

6.
We present a study of the vertical structure of clouds and hazes in the upper atmosphere of Saturn's Southern Hemisphere during 1994-2003, about one third of a Saturn year, based on Hubble Space Telescope images. The photometrically calibrated WFPC2 images cover the spectral region between the near-UV (218-255 nm) and the near-IR (953-1042 nm), including the 890 nm methane band. Using a radiative transfer code, we have reproduced the observed center-to-limb variations in absolute reflectivity at selected latitudes which allowed us to characterize the vertical structure of the entire hemisphere during this period. A model atmosphere with two haze layers has been used to study the variation of hazes with latitude and to characterize their temporal changes. Both hazes are located above a thick cloud, putatively composed of ammonia ice. An upper thin haze in the stratosphere (between 1 and 10 mbar) is found to be persistent and formed by small particles (radii ∼0.2 μm). The lower thicker haze close to the tropopause level shows a strong latitudinal dependence in its optical thickness (typically τ∼20-40 at the equator but τ∼5 at the pole, at 814 nm). This tropospheric haze is blue-absorbent and extends from 50 to 100 mbar to about ∼400 mbar. Both hazes show temporal variability, but at different time-scales. First, there is a tendency for the optical thickness of the stratospheric haze to increase at all latitudes as insolation increases. Second, the tropospheric haze shows mid-term changes (over time scales from months to 1-2 years) in its optical thickness (typically by a factor of 2). Such changes always occur within a rather narrow latitude band (width ∼5-10°), affecting almost all latitudes but at different times. Third, we detected a long-term (∼10 year) decrease in the blue single-scattering albedo of the tropospheric haze particles, most intense in the equatorial and polar areas. Long-term changes follow seasonal insolation variations smoothly without any apparent delay, suggesting photochemical processes that affect the particles optical properties as well as their size. In contrast, mid-term changes are sudden and show various time-scales, pointing to a dynamical origin.  相似文献   

7.
L.A. Sromovsky  P.M. Fry  J.H. Kim 《Icarus》2011,215(1):292-312
Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92 (11), 14987-15001) presented a range of temperature and methane profiles for Uranus that were consistent with 1986 Voyager radio occultation measurements of refractivity versus altitude. A localized refractivity slope variation near 1.2 bars was interpreted to be the result of a condensed methane cloud layer. However, models fit to near-IR spectra found particle concentrations much deeper in the atmosphere, in the 1.5-3 bar range (Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006]. Icarus 182, 577-593; Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229; Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2010]. Icarus 208, 913-926), and a recent analysis of STIS spectra argued for a model in which aerosol particles formed diffusely distributed hazes, with no compact condensation layer (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309). To try to reconcile these results, we reanalyzed the occultation observations with the He volume mixing ratio reduced from 0.15 to 0.116, which is near the edge of the 0.033 uncertainty range given by Conrath et al. (Conrath, B., Hanel, R., Gautier, D., Marten, A., Lindal, G. [1987]. J. Geophys. Res. 92 (11), 15003-15010). This allowed us to obtain saturated mixing ratios within the putative cloud layer and to reach above-cloud and deep methane mixing ratios compatible with STIS spectral constraints. Using a 5-layer vertical aerosol model with two compact cloud layers in the 1-3 bar region, we find that the best fit pressure for the upper compact layer is virtually identical to the pressure range inferred from the occultation analysis for a methane mixing ratio near 4% at 5°S. This strongly argues that Uranus does indeed have a compact methane cloud layer. In addition, our cloud model can fit the latitudinal variations in spectra between 30°S and 20°N, using the same profiles of temperature and methane mixing ratio. But closer to the pole, the model fails to provide accurate fits without introducing an increasingly strong upper tropospheric depletion of methane at increased latitudes, in rough agreement with the trend identified by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309).  相似文献   

8.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

9.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

10.
S.G Gibbard  I de Pater  S Martin  C.E Max 《Icarus》2003,166(2):359-374
We report on observations of Neptune from the 10-meter W.M. Keck II Telescope on June 17-18 (UT) 2000 and August 2-3 (UT) 2002 using the adaptive optics (AO) system to obtain a spatial resolution of 0.06 arcseconds. With this spatial resolution we can obtain spectra of individual bright features on the disk of Neptune in a filter centered near 2 microns. The use of a gas-only, simple reflecting layer radiative transfer model allows us to estimate the best fit altitudes of 18 bright features seen on these 4 nights and to set a constraint on the fraction of hydrogen in ortho/para equilibrium. On these nights there were three main types of features observed: northern hemisphere features in the range from +30 to −45 degrees; southern hemisphere features in the range from −30 to −50 degrees; and small southern features at −70 degrees. We find that the altitudes of the northern features are in the range from 0.023-0.064 bar, which places them in Neptune's stratosphere. Southern features at −30 to −50 degrees are mainly at altitudes from 0.10 to 0.14 bars. The small features at −70 degrees are somewhat deeper in the upper troposphere, at 0.17 and 0.27 bars. This pattern of features located at higher altitudes in the northern hemisphere and lower altitudes in the south has also been noted by previous observers. The best fits for all the observed spectra give a value of 1.0 for the fraction of hydrogen in ortho/para equilibrium; the value of the helium fraction is less well constrained by the data at 0.24. We suggest that the southern mid-latitude features are methane haze circulated up from below, while the −70° features may be isolated areas of upwelling in a general area of subsidence. Northern bright features may be due to subsidence of stratospheric haze material rather than upwelling and condensation of methane gas. We suggest that convection efficiently transports methane ice clouds to the tropopause in the Southern mid latitudes and thus plays a key role in the stratospheric haze production cycle.  相似文献   

11.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

12.
We analyzed a unique, three-dimensional data set of Uranus acquired with the STIS Hubble spectrograph on August 19, 2002. The data covered a full afternoon hemisphere at 0.1 arc-sec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.002 arc-sec and 0.02 nm. We tested our calibration with WFPC2 images of Uranus and found good agreement. We constrained the vertical aerosol structure with radiative transfer calculations. The standard types of models for Uranus with condensation cloud layers did not fit our data as well as models with an extended haze layer. The dark albedo of Uranus at near-infrared methane windows could be explained by methane absorption alone using conservatively scattering aerosols. Ultraviolet absorption from small aerosols in the stratosphere was strongest at high southern latitudes. The uppermost troposphere was almost clear, but showed a remarkable narrow spike of opacity centered on the equator to 0.2° accuracy. This feature may have been related to influx from ring material. At lower altitudes, the feature was centered at 1-2° latitude, suggesting an equatorial circulation toward the north. Below the 1.2 bar level, the aerosol opacity increased some 100 fold. A comparison of methane and hydrogen absorptions contradicted the standard interpretation of methane band images, which assumes that the methane mixing ratio is independent of latitude and attributes reflectivity variations to variations in the aerosol opacity. The opposite was true for the main contrast between brighter high latitudes and darker low latitudes, probing the 1-3 bar region. The methane mixing ratio varied between 0.014 and 0.032 from high to low southern latitudes, while the aerosol opacity varied only moderately with latitude, except for an enhancement at −45° latitude and a decrease north of the equator. The latitudinal variation of methane had a similar shape as that of ammonia probed by microwave observations at deeper levels. The variability of methane challenges our understanding of Uranus and requires reconsideration of previous investigations based on a faulty assumption. Below the 2 bar level, the haze was thinning somewhat. Our global radiative transfer models with 1° latitude sampling fit the observed reflectivities to 2% rms. The observed spectra of two discrete clouds could be modeled by using the background model of the appropriate latitude and adding small amounts of additional opacity at levels near 1.2 bar (southern cloud) and levels as high as 0.1 bar (northern cloud). These clouds may have been methane condensation clouds of low optical depth (∼0.2).  相似文献   

13.
P.G.J. Irwin  N.A. Teanby 《Icarus》2009,203(1):287-302
Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s northern spring equinox in December 2007.The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus’ central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W.K.M., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R. [2009] Icarus), and the lowering reflectivity from mid-latitudes has left a noticeable brighter cloud zone at the equator (e.g. Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557;Karkoschka, E., Tomasko, M. [2009] Icarus). For such substantial cloud changes to have occurred in just two years suggests that the circulation of Uranus’ atmosphere is much more vigorous and/or efficient than is commonly thought. The composition of the main observed cloud decks between 2 and 6-8 bar is unclear, but the absence of the expected methane cloud at 1.2-1.3 bar (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987] J. Geophys. Res., 92, 14987-15001) is striking (as previously noted by, among others, Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006] Icarus, 182, 577-593; Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557; Sromovsky, L.A., Fry, P.M. [2008] Icarus, 193, 252-266; Karkoschka, E., Tomasko, M. [2009] Icarus) and suggests that cloud particles may be considerably different from pure condensates and may be linked with stratospheric haze particles drizzling down from above, or that tropospheric hazes are generated near the methane condensation level and then drizzle down to deep pressures as suggested by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus).The retrieved cloud structures were also tested for different assumptions of the deep methane mole fraction, which Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus) find may vary from ∼1-2% in polar regions to perhaps as much as 4% equatorwards of 45°N,S. We found that such variations did not significantly affect our conclusions.  相似文献   

14.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

15.
We analyze the temporal variation of the tropospheric cloud and haze in the jovian equatorial zone. In order to investigate the time evolution of the haze, we utilize a comprehensive set of archival WFPC2 images in the 953 and 893-nm wavelengths spanning over a decade of HST observations of Jupiter. We find that the latitude of the peak haze reflectivity experienced a southerly shift in between late-1998 and early-2001 (not to be confused with southerly bulk transport of haze particles themselves); before this shift, the latitude of peak reflectivity had remained relatively stable at +7° (planetographic latitude). We examine the average haze reflectivity at three equatorial latitudes (−5°, 0°, +5°) and find variability of amplitude ±20%. Equatorial clouds, which lie deeper than the haze, showed zonal mean variability with an amplitude of about 5% except during the global upheaval of 2006-2007 in which cloud reflectivity dropped up to 16% depending on latitude. An analysis of temporal correlation between zonally averaged cloud reflectivity and zonally averaged haze reflectivity indicates a time-lag of about 1200 days (with a lower limit of 800 days) between changes in cloud reflectivity and later changes in haze reflectivity, but limitations in the temporal coverage of even this extensive dataset make it impossible to rule out even longer time-lags.  相似文献   

16.
O. Muñoz  F. Moreno  D. Grodent  V. Dols 《Icarus》2004,169(2):413-428
We have studied the vertical structure of hazes at six different latitudes (−60°, −50°, −30°, −10°, +30°, and +50°) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb reflectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50° to −50°, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes ±50 and −10 degrees, and smallest (about 18) at ±30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from −50 to +50 degrees being maximum at −10° (τ=0.033). At −60° latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level.  相似文献   

17.
We present results of infrared observations of Neptune from the 10-m W. M. Keck I Telescope, using both high-resolution (0.04 arcsecond) broadband speckle imaging and conventional imaging with narrowband filters (0.6 arcsec resolution). The speckle data enable us to track the size and shape of infrared-bright features (“storms”) as they move across the disk and to determine rotation periods for latitudes −30 and −45°. The narrowband data are input to a model that allows us to make estimates of Neptune's stratospheric haze abundance and the size of storm features. We find a haze column density of ∼106 cm−2 for a haze layer located in the stratosphere, and a lower limit of 107 cm−2 and an upper limit of 109 cm−2 for a layer of 0.2 μm particles in the troposphere. We also calculate a lower limit of 7×106 km2 for the size of a “storm” feature observed on 13 October 1997.  相似文献   

18.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

19.
We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31-34°S near the surface, and the fourth at 52.8°S. Temperature-altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., Tyler, G.L. [1983]. Icarus 53, 348-363), the HASI instrument on the Huygens descent probe (Fulchignoni, M. et al. [2005]. Nature 438, 785-791), and Cassini CIRS results (Flasar, F.M. et al. [2005]. Science 308, 975-978; Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008b]. Icarus 194, 263-277). Sources of error in the retrieved temperature-altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34°S are about 93 K, while that at 53°S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53°S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33°S lie along a dry adiabat except within ∼200 m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34°S shows a more complex structure in the lowest 2 km, while the egress profile at 53°S is more stable.  相似文献   

20.
Keck near-infrared images of Neptune from UT 26 July 2007 show that the cloud feature typically observed within a few degrees of Neptune’s south pole had split into a pair of bright spots. A careful determination of disk center places the cloud centers at −89.07 ± 0.06° and −87.84 ± 0.06° planetocentric latitude. If modeled as optically thick, perfectly reflecting layers, we find the pair of features to be constrained to the troposphere, at pressures greater than 0.4 bar. By UT 28 July 2007, images with comparable resolution reveal only a single feature near the south pole. The changing morphology of these circumpolar clouds suggests they may form in a region of strong convection surrounding a neptunian south polar vortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号