首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work is a review of papers related to the theory of prominence radiation. Special attention is paid to stationary equations and the theory of radiation diffusion in the lines and continua of hydrogen, helium and metals.We conclude that prominences are low-temperature formations T e 7000 K, of low density 1012 particles per cm3, n e 1011 cm–3, effective thickness 109 cm, and that the chemical composition of prominences and that of the Sun's atmosphere are the same. The prominence radiation in the lines of hydrogen, helium and metals is due mainly to quasiresonance scattering of the photospheric radiation.  相似文献   

2.
Helical structures are generally associated with many eruptive solar prominences. Thus, study of their evolution in the solar atmosphere assumes importance. We present a study of a flare-associated erupting prominence of March 11, 1979, with conspicuous helically twisted structure, observed in H line center. We have attempted to understand the role played by twisted force-free magnetic fields in this event. In the analysis, we have assumed that the helical structures visible in H outline the field lines in which prominence tubes are embedded. Untwisting of observed prominence tubes and later, formation of open prominence structures provide evidence of restructuring of the magnetic field configuration over the active region during the course of prominence eruption. Temporal evolution of the force-free parameter is obtained for two main prominence tubes observed to be intertwined in a rope-like structure. Axial electric currents associated with the prominence tubes are estimated to be of the order of 1011 A which decreased with time. Correspondingly, it is estimated that the rate of energy release was 1028 erg s–1 during the prominence eruption.  相似文献   

3.
Quiescent prominences occur as long-lasting cool sheets of matter in the surrounding hot corona at the base of coronal streamers. Seen on the disk they appear as dark filaments dividing regions of opposite magnetic polarity.In this paper a theoretical model is presented, which describes the general appearance of quiescent prominences.It is shown that the neutral sheet between two regions of oppositely directed magnetic fields is thermally unstable. This gives rise to compression and cooling of coronal material to prominence material in a characteristic time of the order of one day for a field strength of 0.5 gauss in the lower corona.It is assumed that due to the finite electrical resistivity of the plasma, filamentary structures are formed by the tearing-mode resistive plasma instability. These structures are thermally insulated from the hot surroundings by the newly formed closed azimuthal magnetic field configuration.It has been shown that for fine structures with a diameter of 300 km the growth rate of the tearing-mode instability is of the same order as the cooling time. The occurrence of fine structures within the prominence is of vital importance for their origin.On leave from the Observatory Sonnenborgh at Utrecht, The Netherlands.  相似文献   

4.
Observations of internal structure and development of four helical prominences are presented. We assume that the helically twisted fine structure threads are outlining magnetic field lines and we found that it is possible to describe the magnetic fields by the uniform twist configuration, with the twists ranging between 2 and 7. The estimated lower limits for the magnetic fields were about 20 G which give lower limits for the currents flowing along the prominences in the range between 2 × 1010 A and 2 × 1011 A and current densities at the axis of the prominences about 10-4 A m-2. The upper limit of electron drift velocity could be estimated as 1 m s-1, which is far below the critical velocities for the onset of plasma microinstabilities.The stability of the studied prominences is discussed and the criteria for the onset of eruptive instability are established for a prominence modelled as a twisted and elliptically curved magnetic flux tube which is anchored in the photosphere and affected by its mirror-current. The eruption starts when the prominence attains a critical height which must be larger than half of the footpoint separation and depends on the values of twist, radius, and footpoint distance of the magnetic flux tube. The observed examples of eruptive prominences agree very well with the predictions. Possible applications to the two-ribbon flare process are outlined.Properties of stable cylindrical prominences in equilibrium are analyzed and a criterion for the distinction between the Kuperus-Raadu and Kippenhahn-Schlüter types of prominences is proposed. According to established criteria, two of the studied prominences were of the Kuperus-Raadu type, while the other two were of the Kippenhahn-Schlüter type.  相似文献   

5.
Heinzel  P.  Anzer  U. 《Solar physics》1999,184(1):103-111
Magnetic dips are generally assumed to be basic equilibrium configurations in quiescent solar prominences. Here we discuss two types of the magnetic dips which were considered in the literature: (1) dips resulting from a force-free magnetic equilibrium in the corona, and (2) magnetic dips which are formed in situations where the Lorentz force balances the weight of the prominence plasma. An important parameter which decides between these two cases is the plasma . For 1, the effect of the prominence material on the equilibrium structure is quite negligible and the case (1) holds. If, however, is larger, say between 0.1 and 1 or even higher, magnetic dips of the second kind are formed and they can be characterized by the angle 1 between the vertical and the direction of the field lines at the surface of the prominence structure. A simple and illustratory formula is derived to relate this angle to the plasma at the prominence center, namely ccot21. c=1 thus corresponds to 1=45°. Finally, we discuss the range of values of both c and 1 as deduced from various observations and conclude that the dips of the second kind are important for the prominence equilibria. We also suggest a new method for determination of the field-line inclination.  相似文献   

6.
The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio I cell/I prominence for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as T –0.6. The density sensitive C iii (formed at T 9 × 104 K) line ratio I 1175/I 977 implies an average density 1.3 × 109 electrons cm–3 in the P-C interface and 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is 10 in most of the prominences studied; in two of the prominences, however, we cannot reject the possibility that o is large. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.Currently on leave from the Institute of Astronomy, Hawaii; at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, 80309.  相似文献   

7.
I. Lerche 《Solar physics》1979,63(1):93-103
We discuss the evolution of pulses of heat both along and perpendicular to magnetic fields threading quiescent prominences. We show that while heating of prominence material can take place on a time scale of the order 103 s (of the same order as the observed winking of H light from prominences and also of the same order as the dynamical Alfvén time scale across a prominence sheet) individual flux tubes are effectively thermally insulated from neighboring tubes, since the transverse (to the ambient supporting magnetic field) heat conduction time scale is of order 104 yr. The exact solution to the one-dimensional parallel heat conduction problem is shown to differ significantly from the approximate solution reported by Ioshpa (1965). We also suggest that uneven heating of a quiescent prominence by the surrounding solar corona may be a contributory mechanism for surges and/or the observed winking phenomenon - both of which are recorded in many quiescent prominences. The signature of such a temperature pulse would be a sharp (103 s) brightening of continuum radiation with a correlated decrease in the free-bound emission, followed by a slow (104 s) recovery of both to their pre-heat pulse levels.  相似文献   

8.
A study has been made of fine structure wavelength shift in the K line spectra from quiescent prominences. A persistent small scale motion is found in the prominence main body. In places where we see the characteristic thread like fine structure in the accompanying H filtergrams the average line-of-sight velocity amplitude is about 1 km s–1. A higher velocity ( 4 km s–1) is associated with a slightly coarser, mottled prominence fine structure. In the low lying regions, connecting the prominence body and the chromosphere, we do not detect any fine structure line shift (v 1/2 km s–1).  相似文献   

9.
Wheatland  M.S. 《Solar physics》2003,214(2):361-373
The distribution of times t between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996–2001 is examined. The distribution exhibits a power-law tail (t) with an index –2.36±0.11 for large waiting times (t>10 hours). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996–1998 (a period of low activity), the power-law index is –1.86±0.14, and for the years 1999–2001 (a period of higher activity), the index is –2.98±0.20. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distributions exhibit power-law tails with very similar indices and time variation.  相似文献   

10.
With thespectro-coronagraph and themultichannel subtractive double pass spectrograph (MSDP) at the Pic du Midi Observatory two quiescent prominences were observed simultaneously. From the spectro-coronagraph observations 2D maps of Hei 10830 , Fexiii 10798 and 10747 line intensities were obtained. In addition, we obtained 2D maps of the ratioR of the two iron lines. This ratio is used as a diagnostic for determining the density of the hot coronal plasma surrounding prominences. We found that the electron density is higher at the location of the prominences than in the corona, whereas small regions (40) of lower electron density are unevenly distributed around the prominences indicating that the surrounding corona is highly inhomogeneous. The density of the cavity is reduced by a factor 1.5 compared to the density of the prominence environment (5 × 108 cm–3). We discuss the existence of cavities around these prominences according to the orientation of their axes relative to the line of sight and according to the velocity field inside the prominences. Constraints on models for prominence formation are derived.  相似文献   

11.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

12.
It is shown that a discrete Alfvén wave can explain the natural oscillations of solar loop prominences by considering the existence of a current flow. Discrete Alfvén waves are a new class of Alfvén waves which is described by the inclusion of the finite ion cyclotron frequency (/ cl 0) and/or the equilibrium plasma current. In this paper we consider only the effect of the current since in solar prominences (/ cl 0). We have modeled the solar prominences as a cylindrical plasma, surrounded by vacuum (corona), with L a where L and a are the plasma column, length, and radius, respectively. We have calculated the spectrum of the discrete Alfvén waves as function of the magnitude and shape of the plasma current.  相似文献   

13.
We study the effects of the sector structure of the interplanetary magnetic field (IMF) on the Galactic cosmic ray (GCR) anisotropy at solar minimum by using Global Network neutron monitor data. The hourly neutron monitor data for 1976 were averaged for the positive (+) and negative (–) IMF sectors (+ and – correspond to the antisolar and solar directions of magnetic field lines, respectively) and then processed by the global survey method. We found that the magnitude of the GCR anisotropy vector is larger in the positive IMF sector and that the phase shifts toward early hours. The derived GCR components A r, A , and A for the different + and – sectors are then used to calculate the angle ( 46°) between the IMF lines and the Sun–Earth line, the solar wind velocity U ( 420 km/s), the ratio of the perpendicular (K ) and parallel (K ||) diffusion coefficients K /K || = ( 0.33), and other parameters that characterize the GCR modulation in interplanetary space.  相似文献   

14.
De Jager  Cornelis 《Solar physics》1985,98(2):267-280
At the very start of the impulsive phase of two solar flares the temperature derived from medium-energy ( 16 keV) X-ray countrates was observed to rise abruptly, by several times 107 K above the temperature derived from low-energy X-ray ( 7 keV) countrates. The difference between the two temperatures relaxed to zero thereafter, quasi-exponentially, with a characteristic time of 1.5 min. This differential temperature variation appears to mimique the differences between the ionic kinetic and the electron temperatures derived from spectral observations (Figures 1 and 2).These observations are explained in a quantitatively supported model of the flare kernel (Figure 4) in which the kernel is heated by electron beams from above. The low-energy electrons are stopped above the kernel and only the medium and high energy electrons penetrate down to the top of the chromosphere, causing heating of the chromospheric gas to about 50 MK, and ablation (evaporation), leading to the abrupt formation of a superhot flare kernel and a likely superhot dome above it (Figure 4), through which gas rises up and spreads out convectively, while cooling down in approximately the same time (45 s). The heating process lasts only for a few minutes. The difference between the Doppler temperature and the electron temperature derived from line intensity ratios or from low energy countrate ratios is ascribed to truncation of the tail of the electron energy distribution in the kernel. The kernel is about 2500 km deep; H emission is radiated by a thin layer at its basis.  相似文献   

15.
D3 and H pictures of prominences were obtained with a 21-in. Lyot coronograph and a Fabry-Perot etalon used as a narrow band filter. The monochromatic images of quiescent, quasiquiescent and loop-prominences were studied. The comparison of the isophotes of quiescent and quasi-quiescent prominences in D3 with those in H shows the similarity of the prominence structure at both wavelength, although there is a strong tendency for an increase in the intensity ratio D3/H in the upper region of prominences. It seems that it is due to lower temperature in the upper regions of prominences. Probably, the relaxation processes establishing ionization equilibrium play some role. Measurements of the knot intensities of the loop-prominence show strong variations of the intensity ratio D3/H (more than one order of magnitude).  相似文献   

16.
A model of 3He enrichments, which was proposed recently, is extended to study enhancements of heavy ions in high-energy particles. With weak currents parallel to the ambient magnetic field, oblique ion-acoustic waves and H cyclotron waves can become unstable. The former can have much greater growth rates at frequencies 3 He than at 4 He near the marginal states of instabilities. The latter can be unstable at 3 He for a wide region of plasma parameters. Thus they could cause 3He enrichments through cyclotron resonances. At the same time, these waves can resonate with first or higher harmonics of cyclotron frequencies of many other ions. We investigate these resonant ions for several cases of plasma temperature. This model predicts enhancements of heavy elements and of neutron-rich isotopes at T 10 MK. It shows heavy ion enhancements also at T 4 MK. Clear differences between these two temperatures, however, can be seen in charge states of ions. At T 2 MK, light ions as well as heavy ions can have cyclotron resonances with these waves, which suggests that such low temperatures are excluded.  相似文献   

17.
Very Large Array (VLA) observations of compact transient sources on the Sun at 2 cm wavelength are presented. These sources have angular sizes of 5–25, brightness temperatures of T B 1–3 × 105 K, and lifetimes ranging between a few minutes to several hours. The emission originates in regions of diffuse plage and quiet Sun, where the photospheric magnetic fields are relatively weak (H 100 G). In some cases the 2 cm radiation may be explained as the thermal bremsstrahlung of a dense (N e 1010 cm-3) plasma in the transition region. For other sources, the relatively high circular polarization ( c 40–50 %) suggests a nonthermal emission mechanism, such as the gyrosynchrotron radiation of mildly relativistic electron with a power-law spectrum.  相似文献   

18.
We have measured the longitudinal component, B, of the magnetic field in quiescent prominences and obtained a relationship between B and , where is the angle between the long axis of the prominence and the north-south direction on the sun. From this relationship we deduce a distribution function for the magnetic field vector in quiescent prominences in terms of the angle between the field and the long axis of the prominence. The mean angle, , for our data is small, - 15°, indicating that the magnetic field traverses quiescent prominences under a small, but finite angle.On leave from Max-Planck Institut für Physik und Astrophysik, München.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Stellmacher  G.  Wiehr  E. 《Solar physics》2000,196(2):357-367
Emission lines from quiescent prominences were observed simultaneously through narrow-band interference filters, thus integrating the total line intensities without the use of a spectrograph. Simultaneous exposures (50 ms) on three electronically connected CCD cameras at the 70 cm VTT on Tenerife assured almost identical influence of the Earth's atmosphere and a spatial resolution of 1 arc sec. The resulting spatially high-resolution two-dimensional images in H, H, and Ca+8542, calibrated in units of the disk-center intensities, allow a two-dimensional mapping of emission ratios yielding relevant physical parameters. The emission relation between H and H, which depends on the total optical thickness, confirms earlier photometric results from spectra, however, with a large sample of data points from six prominences. It demonstrates the saturation effects towards brighter prominences or prominence locations. The relation between Ca+8542 and H, which depends on the gas pressure, is found to vary between different prominences but is nearly constant within one prominence. Its mean spatial variation of 30% within one prominence may be interpreted in terms of a magnetic field with variations of 5%. The brightness distribution in most prominences is not smooth but indicates preferred values, which are interpreted as superpositions of several fine structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号