首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two classes of coronal expansion phenomena have been studied in Sacramento Peak coronal movies: Slow, slightly decelerated expansion phenomena (v=∼10− =∼ 2 km/sec) and fast, accelerated, quasi-exploding arches (v =∼ 10 - > 100 km/sec). The various phenomena were found to be associated with flares in different ways: The slow expansions were long lived post-flare phenomena initiated by the flare; the accelerated expanding arches were either (a) arches expanding prior to and apparently exploding at flare onset, or (b) arches apparently emerging from the flare (probably in its initial phase) and rapidly expanding and exploding, or (c) the expansion and disruption of (originally stable) coronal arches during occurrence of a distant flare. These expansions may be considered as evidence for corresponding flare associated changes in the coronal magnetic field. Mitteilung aus dem Fraunhofer Institut Nr. 96.  相似文献   

2.
A typical concentric ellipse multiple-arch system was observed in the solar corona during the February 4, 1962 eclipse in New Guinea. The following results have been obtained from analysis of a white-light photograph taken by N. Owaki (see Owaki and Saito, 1967a).
  1. The arches are composed of four equidistant components, elliptical in shape, and almost concentric with a prominence at the common center of the ellipses.
  2. The prominence and arch system appears to be the lower region of a helmet-shaped streamer.
  3. The widths of the arches are observed to increase with height.
  4. Analysis was made in the light of three models for the coronal structures that could lead to the observed arches: (a) rod-like concentrations of electrons; (b) tunnel-shaped elliptical shells of electrons; and (c) dome-like ellipsoidal shells of electrons. Electron densities are derived for the models, and the dome-like model is excluded as a possibility for arch systems exhibiting a coronal cavity.
  5. The scale height in the arch-streamer region is found to be almost the same as that of the K-corona, suggesting equal temperatures, density distributions, etc. in each region.
  6. There is a dark space (a coronal cavity) between the innermost arch and the prominence. The brightness of this cavity is 1/5 that of the adjacent arch. It is 3% brighter than the background corona of the arch-streamer system.
  7. A comparison is made between the deficiency of electrons in the coronal cavity and the excess of electrons in the prominence. It is found that the ratio of the excess to the deficiency lies between 0.9 and 40.
  8. A comparison between the electron efflux from the ‘leaky magnetic bottle’ possibly formed by rod-shaped coronal arches and the electron influx into those arches from the chromosphere leads us to the conclusion that the rod model is probably valid and that spicules appear to be an adequate supply for the electrons observed in the arches. The tunnel model may be valid, but in that case spicules are probably not the sources of the electrons observed in coronal arches.
  相似文献   

3.
Extremely low background noise of the HXIS experiment aboard the SMM made it possible to detect > 3.5 keV X-ray emissions from non-flaring active regions which are 103–104 times weaker than the X-ray flux from flares. Short-lived X-ray bursts and long-lived X-ray enhancements of various intensities seem to characterize active regions in different phases of their development. After major two-ribbon flares, giant X-ray arches are seen in the corona, slowly decaying for many hours after the flare end. Associated with these arches appear to be quasi-periodic flare-like variations of purely coronal nature.  相似文献   

4.
We have detected chromospheric footpoints of the giant post-flare coronal arches discovered by HXIS a few years ago. H photographs obtained at Big Bear and Udaipur Solar Observatories show chromospheric signatures associated with 5 sequential giant arch events observed in the interval from 6 to 10 November, 1980. The set of footpoints at one end of the arches consists of enhancements within a plage at the northeast periphery of the active region and the set of footpoints at the other end of the arch consists of brightenings of the chromosphere south of the active region. Both sets of footpoints show very slow brightness variations correlated in time with the brightness variations of the X-ray arches. Current-free modelling of the coronal magnetic field by Kopp and Poletto (1989), based on a Kitt Peak magnetogram, confirms the identification of the two sets of footpoints by showing magnetic field lines connecting them.The brightenings appear as a succession of point-like enhancements whose individual lifetimes are of the time-scale of minutes but which continue to occur for periods of several hours. This behaviour allows us to infer a fine structure in the coronal arches, undetectable in the X-ray images. The discovery of these brightenings and their location at the periphery of the active region also alters our conception of the relationship of the giant arches to the flares that begin concurrently with them. The giant arch phenomenon appears now to be either: (1) a long-lived, semi-permanent, coronal structure which is revived and fed with plasma and energy by underlying dynamic flares, or alternatively (2) a system of high-altitude loops which open at the onset of every such flare and subsequently reconnect over intervals of many hours.  相似文献   

5.
Riddle  A. C. 《Solar physics》1974,39(1):153-154
The observations of a brief flaring region between two plages on the eastern limb of the Sun and the subsequent coronal transient are reported for June 16, 1972 by Koomen et al. (1974). Both of these events have unambiguous and closely timed associations with the solar noise bursts observed at 2800 and 2700 MHz and are also accompanied with good X-ray and SID effects but faint subflare (Solar-Geophysical Data). The two frequencies are those monitored at widely separated stations operated by the Astrophysics Branch of the National Research Council at Lake Traverse, Ontario and at Penticton, B.C.  相似文献   

6.
Solar radio and microwave sources were observed with the Very Large Array (VLA) and the RATAN-600, providing high spatial resolution at 91 cm (VLA) and detailed spectral and polarization data at microwave wavelengths (1.7 to 20 cm - RATAN). The radio observations have been compared with images from the Soft X-ray Telescope (SXT) aboard theYohkoh satellite and with full-disk phoptospheric magnetic field data from the Kislovodsk Station of the Pulkovo Observatory. The VLA observations at 91 cm show fluctuating nonthermal noise storm sources in the middle corona. The active regions that were responsible for the noise storms generally had weaker microwave emission, fainter thermal soft X-ray emission, as well as less intense coronal magnetic fields than those associated with other active regions on the solar disk. The noise storms did, however, originate in active regions whose magnetic fields and radiation properties were evolving on timescales of days or less. We interpret these noise storms in terms of accelerated particles trapped in radiation belts above or near active regions, forming a decimetric coronal halo. The particles trapped in the radiation belts may be the source of other forms of nonthermal radio emission, while also providing a reservoir from which energetic particles may drain down into lower-lying magnetic structures.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

7.
A model of a coronal region of enhanced Fexv and Fexvi emission is developed and its energy balance is examined using extreme ultraviolet observations from OSO-7 together with calculations of possible force-free coronal magnetic field configurations. The coronal emissions overlying the photospheric boundary between regions of opposite magnetic polarity are found to be associated with generally non-potential (current-carrying) magnetic fields in the forms of arches with footpoints in regions of opposite polarity. The orientation of these arches relative to the neutral line changes with degree of ionization of the emitting ion (which we infer from our limb observations to be a function of height) and may be evidence of differing electric currents along various field lines. The appearance of a coronal arch, seen side-on, can conveniently be represented by a parabola and a detailed analysis (Appendix) shows this to be a realistic approximation that should be generally useful in analyzing two-dimensional pictures of coronal structures. Applying this analysis to the most prominent coronal region observed in the radiations of Fexv and Fexvi, we find a maximum in the electron temperature, T e , of 2.6 × 106K at the top of arches whose heights are 20000–40000 km and whose footpoints are separated by ≈ 100000 km. A temperature gradient of ▽T e ≈5 × 10-5K cm-1 is found in this coronal structure. Radiative losses are typically fifteen times greater than conductive losses and the energy deposition required to maintain the coronal feature is nearly uniformly distributed along its length.  相似文献   

8.
We analysed multifrequency 2-dimensional maps of the solar corona obtained with the Nançay radioheliograph during two solar rotations in 1986. We discuss the emission of the quiet Sun, coronal holes and local sources and its association with chromospheric and coronal features as well as with large-scale magnetic fields. The brightness temperature of the quiet Sun was 5 to 5.5 × 105 K at 164 MHz and 4.5 to 5 × 105 K at 408 MHz. A coronal hole, also detected in the 10830 Å He i line, had a brightness temperature of 4.5 × 105 at 164 and 2.5 × 105 at 408 MHz. We give statistics of source brightness temperatures (on the average 8% above the background at 164 MHz and 14% at 408 MHz), as well as distributions in longitude and latitude. Although we found no significant center-to-limb effect in the brightness temperature, the sources were not visible far from the central meridian (apparently a refraction effect). The brightest sources at 164 MHz were near, but not directly above active regions and had characteristics of faint type I continua. At 408 MHz some sources were observed directly above active regions and one was unambiguously a type I continuum. The majority of the fainter sources showed no association with chromospheric features seen on H synoptic charts, including filaments. Most of them were detected at one frequency only. Sources identified at three frequencies (164, 327, and 408 MHz) were located in regions of enhanced large-scale magnetic field, some of them at the same location as decayed active regions visible one rotation before on synoptic H charts. Multifrequency sources are associated with maxima of the green line corona. The comparison with K-corona synoptic charts shows a striking association of the radio sources with dense coronal regions, associated with the coronal neutral sheet. Furthermore, we detected an enhanced brightness region which surrounds the local sources and is stable over at least one solar rotation. We call this feature a coronal plateau and we identify it with the radio counterpart of the coronal neutral sheet.  相似文献   

9.
A large long-lived soft X-ray emitting arch system was observed during the last Skylab mission. This arcade stayed in the same approximate position for several solar rotations. We suggest that these long-lived arches owe their stability to the stable coronal magnetic-field configuration. A global constant force-free magnetic field analysis, as developed by Nakagawaet al. (1977), is used to describe the arches, and results in a marked resemblance between the theoretical magnetic-field configuration and the observed X-ray emitting feature.  相似文献   

10.
By using a combination of X-ray (HXIS), H (Haleakala), white-light corona (Solwind), and zodiacal light (Helios) images on 21–22 May, 1980 we demonstrate, and try to explain, the co-existence of a coronal mass ejection with a stationary post-flare coronal arch. The mass ejection was seen, both by Solwind and Helios, in prolongation of the path of a powerful spray, whereas the active region filament did not erupt. A tentative comparison is made with other occurrences of stationary, or quasi-stationary post-flare coronal arches.  相似文献   

11.
During the eclipse of 12 November 1966, the solar corona was photographed at an effective wavelength of 6500 Å with an f/16, 11.1 cm aperture camera. Reduction of the observations yields coronal radiances and polarizations from 1.4 to 3.5 solar radii. Standard techniques are used for the separation of F and K-coronas, determination of coronal electron densities and temperatures, and estimation of the orientation of the major streamers in space.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
Detailed comparisons of Culgoora 160 MHz radioheliograms of solar noise storms and Skylab EUV spectroheliograms of coronal loop structures are presented. It is concluded that: (1) there is a close association between changes in large-scale magnetic fields in the corona and the onset or cessation of noise storms; (2) these coronal changes result from the emergence of new magnetic flux at the photospheric level; (3) although new magnetic flux at the photospheric level is often accompanied by an increase in flare activity the latter is not directly responsible for noise storm activity; rather the new magnetic flux diffuses slowly outwards through the corona at rates 1–2 km s–1 and produces noise storms at 160 MHz 1–2 days later; (4) the coronal density above or in large-scale EUV loop systems is sufficiently dense to account for noise storm emission at the fundamental plasma frequency; (5) the scatter in noise storm positions can be accounted for by the appearance and disappearance of individual loops in a system.  相似文献   

13.
Chertok  I.M.  Kahler  S.  Aurass  H.  Gnezdilov  A.A. 《Solar physics》2001,202(2):337-354
We discuss a little-known variety of sharp decreases of long-duration meter-wavelength noise storms and type IV bursts. A survey of the IZMIRAN and AIP radio observations shows that a decrease or nearly complete disappearance of the continuum and bursts developing over tens of minutes without a subsequent recovery of the radio flux occasionally occurs. The decrease is usually preceded by a short-duration (several tens of minutes) enhancement of the radio emission. In these events, the onset of the flux decrease drifts from high to low frequencies with a rate of –(0.05–0.35) MHz s–1, comparable to the drift rates of noise-storm onsets and of chains of type I bursts. White-light coronagraph observations, as well as the characteristics of the accompanying microwave and soft X-ray emissions, provide evidence that such radio decreases appear to be associated with coronal mass ejections (CMEs) and post-CME phenomena. Yohkoh/SXT images show radio flux decrease events which are accompanied by significant rearrangements of coronal structures. We suggest that the radio flux variations are caused by CME interactions with pre-existing coronal arcade structures which are sources of noise storms and energetic electron acceleration. The fact that the noise-storm decreases develop with delays of several tens of minutes relative to the associated microwave burst peak, when the corresponding CME front is located at heights of several R , however, is not explained.  相似文献   

14.
Arch systems lying above quiescent prominences in the solar corona have long drawn the attention of eclipse observers, and such formations have been investigated since the end of the last century. Almost every eclipse photograph shows one or more arches, and in most cases the arch system is accompanied by a quiescent prominence below it and a helmet streamer above it. Also, in some cases there is a dark cavity between the arch system and the prominence.On large-scale photographs obtained at the November 12, 1966 eclipse, detailed photometry has been carried out on a formation in the corona composed of a helmet streamer straddling two multiple-arch systems each with a dark cavity and a quiescent prominence. The excess of electrons in the arches and the deficiency in the cavities are evaluated. We find that the formation of a prominence requires much more material than available in the cavity before depletion. Consequently the condensation theory of coronal matter into prominences seems to have difficulties explaining the necessary amount of matter in the cases where coronal arches - delineating magnetic field lines above the cavity - may exclude inflow of material from the corona. We comment on the low velocity of solar wind in the helmet streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
The electron density distribution of the inner solar corona (r 2 R ) as a function of latitude, longitude, and radial distance is determined from K-coronameter polarization-brightness (pB) data. A Legendre polynomial is assumed for the electron density distribution, and the coefficients of the polynomial are determined by a least-mean-square regression analysis of several days of pB-data. The calculated electron density distribution is then mapped as a function of latitude and longitude. The method is particularly useful in determining the longitudinal extent of coronal streamers and enhancements and in resolving coronal features whose projections on the plane of the sky overlap.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The principal polar-crown coronal helmet structures were selected from nearly three years (May, 1965–January, 1968) of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii. Six isolated and long-lived helmet systems were found at latitudes of 45° and above. Their developments are compared with underlying chromospheric and photospheric activity and a simple phenomenological model is presented showing that a coronal system is formed over an active region. Thereafter the center of gravity of the system gradually drifts poleward with the trailing unipolar magnetic region (UMR), and it becomes a high latitude coronal helmet, arched over a polar crown filament.By comparison of these coronal helmets with observations of the outer corona (to circa 4 R ) made at solar eclipse, lunar sunset, and with balloon and rocket-borne externally occulted corona-graphs, it appears that ground-based K-coronameter measurements to a distance of 1.5–2.0 R are sufficient to detect the coronal streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associ- ated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.  相似文献   

18.
We present a detailed analysis of the magnetic topology of AR 2776 together with Hα UV, X-rays, and radio observations of the November 5, 1980 flares in order to understand the role of the active region large-scale topology on the flare process. As at present the coronal magnetic field is modeled by an ensemble of sub-photospheric sources whose positions and intensities are deduced from a least-square fit between the computed and observed longitudinal magnetic fields. Charges and dipole representations are shown to lead to similar modeling of the magnetic topology provided that the number of sources is great enough. However, for AR 2776, departure from a potential field has to be taken into account, therefore a linear force-free field extrapolation is used. The locations of the four bright off-band Hα kernels in quadrupolar active regions have been studied previously. In this new study the active region is bipolar and shows a two-ribbon structure. We show that these two ribbons are a consequence of the bipolar photospheric field (the four kernels of quadrupolar regions merge into two bipolar regions). The two ribbons are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibril direction, is taken into account. This study supports the hypothesis that magnetic energy is stored in field-aligned currents and released by magnetic reconnection at the location of the separator, before being transported along field lines to the chromospheric level. It is also possible that part of the magnetic energy could be stored and released on the separatrices. Our study shows that meeting just one of two conditions- the presence of intense coronal currents or of a separator in a magnetic field configuration - is not sufficient for flaring. In order to release the stored energy, the coronal currents need either to be formed along the separatrices or to be transported towards the separator or separatrices. The location of the observed photospheric current concentrations on the computed separatrices supports this view. Member of the Carrera del Investigador Científico, CONICET.  相似文献   

19.
Large-scale active coronal phenomena in Yohkoh SXT images   总被引:1,自引:0,他引:1  
We have found several occurrences of slowly rising giant arches inYohkoh images. These are similar to the giant post-flare arches previously discovered by SMM instruments in the 80s. However, we see them now with 3–5 times better spatial resolution and can recognize well their loop-like structure. As a rule, these arches followeruptive flares with gradual soft X-ray bursts, and rise with speeds of 1.1–2.4 km s–1 which keep constant for >5 to 24 hours, reaching altitudes up to 250 000 km above the solar limb. These arches differ from post-flare loop systems by their (much higher) altitudes, (much longer) lifetimes, and (constant) speed of growth. One event appears to be a rise of a transequatorial interconnecting loop.In the event of 21–22 February 1992 one can see both the loop system, rising with a gradually decreasing speed to an altitude of 120 000 km, and the arch, emerging from behind the loops and continuing to rise with a constant speed for many more hours up to 240 000 km above the solar limb. In the event of 2–3 November 1991 three subsequent rising large-scale coronal systems can be recognized: first a fast one with speed increasing with altitude and ceasing to be visible at about 300 000 km. This most probably shows the X-ray signature of a coronal mass ejection (CME). A second one, with gradually decreasing speed, might represent very high rising flare loops. A third one continues to rise slowly with a constant speed up to 230 000 km (and up to 285 000 km after the speed begins to decay), and this is the giant arch. This event, including an arch revival on November 4–5, is very similar to rising giant arches observed by the SMM on 6–7 November 1980. Other events of this kind were observed on 27–28 April 1992, 15 March 1993, and 4–6 November 1993, all seen above the solar limb, where it is much easier to identify them.The temperature in the brightest part of the arch of 2–3 November 1991 was increasing with its altitude, from 2 to 4 × 106 K, which seems to be an effect of slower cooling at lower densities. Under an assumption of line-of-sight thickness of 50 000 km, the emission measure indicates densities from 1.1 × 1010 cm–3 at an altitude of 150 000 km to 1.0 × 109 cm–3 at 245 000 km 11.5 hours later. It appears that the arch is composed of plasma of widely different temperatures, and that hot plasma rises faster than the cool component. Thus the whole arch expands upward, and its density gradient increases with time, which explains whyYohkoh images show only the lowest and coolest parts of the expanding structure. The whole arch may represent an energy in excess of 1031 erg, and more if conduction contributes to the arch cooling.We suggest that the rise of the arch is initiated by a CME which removes the magnetic field and plasma in the upper corona, and the coronal structures remaining below this cavity begin to expand into the vacuum left behind the CME. However, we are unable to explain why the speed of rise stays constant for so many hours.  相似文献   

20.
In this study we continue our investigation of the radio sources located above the neutral line of the radial magnetic field in solar active regions, i.e., the so-called neutral line associated sources (NLS). The nature of NLS is still far from being understood. To study it, we use the spectroscopic capabilities of the new broadband polarimetric facility of the RATAN-600 radio telescope. We study the radio spectra of NLS sources in several solar active regions over a wide range of variations of their sizes. We find the NLS radio emission fluxes to be related to the gradient of the quasi-longitudinal magnetic field in the photosphere. We estimate the vertical positions of NLS relative to the cyclotron radio sources. We find fine spectral features in the NLS emission, which confirm the presence of a current sheet in their sources. We associate the appreciable lack of polarization in such sources with their location near the tops of the coronal arches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号