首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Possible trajectories of passive balloons in Titan's troposphere are simulated with the instantaneous wind field predicted by a GCM (general circulation model). In most areas the basic motion of a balloon is a predominantly eastward or westward drift, depending on altitude, latitude and season of the balloon release point. Some meridional oscillation is always superposed on this basic motion, resulting in a wavy trajectory, with a maximum extent (of 40°) at high latitudes of the winter hemisphere. As a general rule, the meridional oscillation can be maximised if a balloon is deployed in altitudes and latitudes where the mean zonal wind is eastward and smaller than the phase speed of Saturn's gravitational tide on Titan. A balloon's groundtrack does not repeat as it makes successive circuits around Titan, but rather makes a spiral or braided pattern. The summer pole is rather difficult to access for a balloon not directly introduced there because of small meridional oscillation, while the winter pole can be readily accessed and left several times. A preferred zonal drift direction can be achieved by choosing a proper altitude and hemisphere, but choosing a preferred meridional direction is not possible.  相似文献   

2.
Although the Harang discontinuity has so far been identified in terms of various phenomena (such as ground magnetic fields, ionospheric currents, auroral features, and electric fields), the loci defined by those different phenomena do not always coincide. It is suggested that the Harang discontinuity may not be a line boundary across which the electric field changes its direction simply from poleward to equatorward, but that the field gradually rotates counterclockwise in a narrow region; thus the westward electric field dominates there. In such a case, no field-aligned current is necessarily required to flow from or into the discontinuity region. This view may be contrasted with the conventional view that an intense upward field-aligned current should flow from the Harang discontinuity. A model is presented in which the poleward ionospheric current (the Hall current resulting from the westward electric field) in the Harang discontinuity region connects the eastward electrojet and the westward electrojet.  相似文献   

3.
Recent retrievals of zonal thermal winds obtained in a cyclostrophic regime on Venus are generally consistent with cloud tracking measurements at mid-latitudes, but become unphysical in polar regions where the values obtained above the clouds are often less than or close to zero. Using a global atmospheric model, we show that the main source of errors that appear in the polar regions when retrieving the zonal thermal winds is most likely due to uncertainties in the zonal wind intensity in the choice of the lower boundary condition.Here we suggest a new and robust method to better estimate the lower boundary condition for high latitudes, thereby improving the retrieved zonal thermal winds throughout the high latitudes middle atmosphere. This new method is applied to temperature fields derived from Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data on board the Venus Express spacecraft. We obtain a zonal thermal wind field that is in better agreement with other, more direct methods based on either retrieving the zonal winds from cloud tracking or from direct measurements of the meridional slope of pressure surfaces.  相似文献   

4.
Six values of the rate of rotation of the Earth's upper atmosphere have been obtained by analysis of the orbital inclinations of four balloon satellites in the intervals just before the final decay of their orbits. The effective heights of these results range from about 350 to about 675 km. The values themselves range from 0·8 to 1·4 times the Earth's rotation and correspond to zonal wind speeds between 100 m/sec westward and 200 m/sec eastward. All the results correspond to fairly specific local times and are consistent with a diurnal wind pattern in low latitudes having a strong eastward maximum near local midnight and a lesser westward maximum near 10:00 LT. They argue against the contention of a sharp decrease in the rate with respect to that of the Earth, which is supposed to begin at about 360 km. The factors involved in the determination of these values and the method used are discussed in considerable detail.  相似文献   

5.
《Planetary and Space Science》2007,55(13):1990-2009
This study aims at interpreting the zonal and meridional wind in Titan's troposphere measured by the Huygens probe by means of a general circulation model. The numerical simulation elucidates the relative importance of the seasonal variation in the Hadley circulation and Saturn's gravitational tide in affecting the actual wind profile. The observed reversal of the zonal wind at two altitudes in the lower troposphere can be reproduced with this model only if the near-surface temperature profile is asymmetric about the equator and substantial seasonal redistribution of angular momentum by the variable Hadley circulation takes place. The meridional wind near the surface is mainly caused by the meridional pressure gradient and is thus a manifestation of the Hadley circulation. Southward meridional wind in the PBL (planetary boundary layer) is consistent with the near-surface temperature at the equator being lower than at mid southern latitudes. Even small changes in the radiative heating profile in the troposphere can substantially affect the mean zonal and meridional wind including their direction. Saturn's gravitational tide is rather weak at the Huygens site due to the proximity to the equator, and does not clearly manifest itself in the instantaneous vertical profile of wind. Nevertheless, the simulated descent trajectory is more consistent with the observation if the tide is present. Because of a different force balance in Titan's atmosphere from terrestrial conditions, PBL-specific wind systems like on Earth are unlikely to exist on Titan.  相似文献   

6.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

7.
This paper expands the earlier results of Rostoker and Samson (1981), who noted that there are two latitudinal areas of Pi 2 localization near the high latitude, substorm enhanced electrojets. The detailed study presented here outlines the morphology of the polarizations of the Pi 2's in and near the westward travelling surge. There are two latitudinal areas of Pi 2 localization. A poleward Pi 2 predominates within the surge and to the East, whereas an equatorward Pi 2 predominates equatorward and West of the surge. These Pi 2 localizations appear to correlate with the substorm enhanced westward and eastward electrojets respectively. However, the maximum in the Pi 2 power does not always coincide with the center of the electrojet. The poleward Pi 2 has largest amplitudes to the East of the head of the westward travelling surge. This Pi 2 shows a latitudinal polarization reversal from clockwise on the equatorside (viewed down on H-D plane) to counterclockwise on the poleside of a latitudinal demarcation line, which occurs just poleward of the initial breakup. This demarcation line is usually equatorward of the most poleward expansion of the surge. To the West of the surge front, where the equatorward Pi 2 predominates, there is again a latitudinal polarization reversal but in this case the polarization is counterclockwise equatorward and clockwise poleward of the demarcation line. This demarcation is equatorward of that for the poleward Pi 2, and appears to lie at the latitude of the initial breakup. Consequently, the westward travelling surge appears to mark the longitudinal transition from equatorward to poleward Pi 2. The elliptical polarization of the Pi 2's is most likely caused by azimuthai (longitudinal) expansion of the field-aligned currents in the surge, in association with reflection of the field-aligned current pulses from northern and southern high latitude ionospheres.  相似文献   

8.
The upper thermosphere and F-region ionosphere system at 43°N is modelled for equinox and moderate solar conditions via a series of iterative calculations employing a thermospheric wind model and a one-dimensional ionospheric model which are mutually coupled. Several feedback loops within the system involving F2-layer peak height, F2-layer peak density, zonal wind, meridional wind, and Coriolis force are investigated to better understand the interactive aspect of ionosphere-thermosphere coupling. The interplay of primary importance involves the night-time ascent/descent of the F-layer due to equatorward/poleward neutral winds, the resulting changes in ion drag presented to the meridional and zonal wind fields, and the Coriolis force modification of the ion drag coupling. Wind shear and plasma profile shape are not significantly coupled. For magnetically undisturbed conditions, self-consistent treatment of these effects modifies a non-interactive “control” calculation by 20–35 m s−1 in the wind field. During geomagnetically disturbed periods interactive processes play a more crucial role in determining thermospheric and ionospheric storm responses. Our calculations reveal wind enhancements of up to 100 m s−1 associated with the lifting and negative-phase depletion of the F-region for prolonged magnetic disturbance conditions, the former mechanism accounting for a major portion of the effect.  相似文献   

9.
Midlatitude F-region neutral winds and temperatures determined from Fabry-Perot interferometer measurements of the doppler shifts and widths of nightglow 630.0 nm line profiles are presented for the priority regular world day 14 August 1980. They exhibit, in many respects, the observed behavior for other summer, geomagnetically quiet nights at solar maximum. The neutral temperature decreases from 1500°K after sunset (21 h LT) to a minimum of ˜ 1200°K before dawn (05 h LT), except to the north of the observatory. The zonal winds are eastward at sunset at 50 m/sec, decrease to zero at 02 h LT and are westward just before dawn. The meridional winds are zero just after sunset and reach a maximum equatorward value of 50–70 m/sec at local midnight but do not decrease as predicted; instead, they remain at roughly these values towards dawn. The NCAR thermospheric general circulation model (TGCM) is used to predict the global upper atmospheric temperature and circulation patterns for this world day. The model predictions agree with the measured neutral temperatures and exhibit qualitative similarities to the measured neutral winds. It is concluded that inclusion in the model of ion drift at midlatitudes should improve the agreement with observations.  相似文献   

10.
The influence of Saturn's gravitational tide on the atmosphere of Titan is investigated by means of a three-dimensional general circulation model. Titan's orbital eccentricity of 0.0292 gives rise to time-dependent radial and librational tide whose potential circles eastward on Titan. Unlike atmospheric tides on terrestrial planets, Saturn's tide on Titan has a large impact on the dynamic meteorology down to the surface. The surface pressure oscillates by up to 1.5 hPa through the orbit. Near the surface the tidal wind dominates the atmospheric flow and exhibits strong temporal and spatial variation. The superposition of the annually present, thermally forced latitudinal pressure gradient and tidally caused pressure variation produces a unique wind pattern near the surface characterized by equatorward flow and high-latitude whirls. At higher levels the tidal wind manifests itself as eastward traveling planetary-scale wave of wavenumber 2 superposed on the background wind. In general tidal winds are more significant in the troposphere, where other forcing mechanisms are weak. Meridional tidal winds become as fast as 5 m s−1 in the troposphere and change direction periodically through the orbit and along the parallel of latitude. Except in the lower troposphere, zonal winds always remain prograde because the tidal wind amplitude is usually smaller than the mean zonal wind. The tide also has a large impact on the mean zonal circulation in the stratosphere. A meridional drift of the descending Huygens Probe in the troposphere would be the easiest way to verify the tidal wind on Titan, but more complete observations of tropospheric wind and surface pressure by a future mission would be required to unveil the complete details of the tidal wind.  相似文献   

11.
We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find:
  1. The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field.
  2. Polar filament bands track the boundary latitudes of the unipolar regions, drifting poleward with the regions at about 10 m s-1.
  3. The Mt. Wilson magnetic data, combined with a simple model calculation, show that the filament drift expected from diffusion alone would be slower than observed, and in some cases would be equatorward rather than poleward.
  4. The observation that filaments drift poleward along with the magnetic regions shows that fields of both polarities are carried by the meridional flow, as would be expected, rather than only the f-polarity flux which dominates the strength. This leads to the prediction that in the mid-latitudes during intervals between the passage of f-polarity regions, both polarities are present in nearly equal amounts. This prediction is confirmed by the magnetic data.
  相似文献   

12.
Sixty auroral absorption substorms (30 in IQSY and 30 in IASY) have been analysed on the basis of riometer-recordings taken at some 40 stations distributed over auroral, subauroral and polar cap latitudes. Synoptic maps showing isoabsorption curves have been produced every 15 min (sometimes every 5 min) of the 60 substorms; 705 maps altogether.Some of the results of the analysis are as follows.Initiation of a substorm most frequently occurs near midnight but may occur anywhere between early evening and late morning. The time of onset becomes earlier and the latitude of onset moves equatorward as the level of magnetic activity increases.The longitude expansion velocities are contained in the range 0.7–7 km/sec except for a few extreme values which exceed 20 km/sec.The auroral absorption eastward expansion velocity is smaller than the corresponding velocity of the boundary of the region of activation of the visual aurora after break up by a factor 14?12.The expansion velocity corresponds, in general, to drift velocities of electrons of energies in the range 50–300 keV but, for the extreme speeds, electron energies around 1 MeV are needed.Expansion of the absorption in the westward direction was seen in about half of the substorms studied. In about half of these, expansion along the auroral oval could be indentified, but in almost all of these cases some expansion in the auroral zone latitudes was also seen. In about an equal number of events, expansion was confined primarily to the auroral zone.The velocity of the westward expansion was about 1 km/sec along the auroral oval (i.e. approximately equal with the speed of the westward travelling surge) but about 2 km/sec along the auroral zone.The meridional expansion velocities found agree well with those measured for visual aurora (? 1 km/sec).The variability of the behaviour of different substorms is very large. To illuminate this the following may be mentioned, in addition to what has been stated above about the statistics.Although the absorption maximum practically always moves eastward from the initiation region, exceptions have been seen in which the maximum started moving west and in a later phase went eastward.Sometimes the absorption maximum stays in the injection area or very close to it, although in most cases it moves eastward into the dayside. In extreme eases it has been found to move more than 270° in the eastward direction.There are auroral absorption substorms in which injection seems to take place in more than one area simultaneously.The observations cannot all be understood in terms of gradient and curvature drift of electrons from a small area of injection only. A broad intrusion of hot plasma from the tail into the inner magnetosphere seems to be needed.No strong dependence of particle precipitation on the illumination of the upper ionosphere by sunlight was seen. The results do, therefore, not support the hypothesis of Brice and Lucas (1971) that cold plasma density increases, originating in the ionosphere, significantly increase the precipitation rate of energetic trapped particles.  相似文献   

13.
The average auroral zone electric field pattern has been studied to determine whether such fields can, as has been suggested, drive the super-rotation of the upper atmosphere. It is shown that the local time averaged meridional electric field is small and, in fact, poleward, which would tend to drive a prevailing westerly wind. When averaged only over the dayside, where ion drag should be most important due to the higher ion density, the poleward average is even more pronounced. Thus at high latitudes ion drag acts to drive a prevailing neutral wind to the west. Model calculations indicate that without including electric fields the prevailing wind at mid-latitudes should be to the west, due to higher ion drag on the dayside. Including the present results will increase ion drag on the dayside and further enhance this effect. These results thus suggest that at middle and high latitudes the upper atmosphere does not superrotate.  相似文献   

14.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

15.
We cross-correlate pairs of Mt. Wilson magnetograms spaced at intervals of 24–38 days to investigate the meridional motions of small magnetic features in the photosphere. Our study spans the 26-yr period July 1967–August 1993, and the correlations determine longitude averages of these motions, as functions of latitude and time. The time-average of our results over the entire 26-yr period is, as expected, antisymmetric about the equator. It is poleward between 10° and 60°, with a maximum rate of 13 m s–1, but for latitudes below ±10° it is markedly equatorward, and it is weakly equatorward for latitudes above 60°. A running 1-yr average shows that this complex latitude dependence of the long-term time average comes from a pattern of motions that changes dramatically during the course of the activity cycle. At low latitudes the motion is equatorward during the active phase of the cycle. It tends to increase as the zones of activity move toward the equator, but it reverses briefly to become poleward at solar minimum. On the poleward sides of the activity zones the motion is most strongly poleward when the activity is greatest. At high latitudes, where the results are more uncertain, the motion seems to be equatorward except around the times of polar field reversal. The difference-from-average meridional motions pattern is remarkably similar to the pattern of the magnetic rotation torsional oscillations. The correspondence is such that the zones in which the difference-from-average motion is poleward are the zones where the magnetic rotation is slower than average, and the zones in which it is equatorward are the zones where the rotation is faster.Our results suggest the following characterization: there is a constant and generally prevailing motion which is perhaps everywhere poleward and varies smoothly with latitude. On this is superimposed a cycle-dependent pattern of similar amplitude in which the meridional motions of the small magnetic features are directed away from regions of magnetic flux concentration. This is suggestive of simple diffusion, and of the models of Leighton (1964) and Sheeley, Nash, and Wang (1987). The correspondence between the meridional motions pattern and the torsional oscillations pattern in the magnetic rotation suggests that the latter may be an artifact of the combination of meridional motion and differential rotation.  相似文献   

16.
We study the solar-cycle variation of the zonal flow in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm covering the period from mid-2001 to mid-2013 or from the maximum of Cycle 23 through the rising phase of Cycle 24. We have analyzed Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams with a ring-diagram analysis. The zonal flow varies with the solar cycle showing bands of faster-than-average flows equatorward of the mean latitude of activity and slower-than-average flows on the poleward side. The fast band of the zonal flow and the magnetic activity appear first in the northern hemisphere during the beginning of Cycle 24. The bands of fast zonal flow appear at mid-latitudes about three years in the southern and four years in the northern hemisphere before magnetic activity of Cycle 24 is present. This implies that the flow pattern is a direct precursor of magnetic activity. The solar-cycle variation of the zonal flow also has a poleward branch, which is visible as bands of faster-than-average zonal flow near 50° latitude. This band appears first in the southern hemisphere during the rising phase of the Cycle 24 and migrates slowly poleward. These results are in good agreement with corresponding results from global helioseismology.  相似文献   

17.
Substorm onsets and intensifications are accompanied on a one-to-one basis by a Pi 2 magnetic pulsation burst. The source region for these pulsations is generally thought to lie in the region of substorm disturbance in the auroral oval. In this paper we outline the characteristics of Pi 2 pulsations in regions near the substorm enhanced electrojet but removed from the locale of the westward travelling surge. We show that a resonance region for the pulsations lies at the equatorwad edge of the westward electrojet, which in the evening sector marks the locus of the Harang discontinuity. Finally we show examples where the maximum amplitude of the Pi 2 is located at or equatorward of the southern border of the eastward electrojet or at the southern border of the westward electrojet. This is clear evidence for the coupling of wave energy into the L-shells far distant from the source of the energy. Mechanisms for Pi 2 generation are discussed in the context of the results presented in this paper.  相似文献   

18.
We study the North–South asymmetry of zonal and meridional components of horizontal, solar subsurface flows during the years 2001–2004, which cover the declining phase of solar cycle 23. We measure the horizontal flows from the near-surface layers to 16 Mm depth by analyzing 44 consecutive Carrington rotations of Global Oscillation Network Group (GONG) Doppler images with a ring-diagram analysis technique. The meridional flow and the errors of both flow components show an annual variation related to the B 0-angle variation, while the zonal flow is less affected by the B 0-angle variation. After correcting for this effect, the meridional flow is mainly poleward but it shows a counter cell close to the surface at high latitudes in both hemispheres. During the declining phase of the solar cycle, the meridional flow mainly increases with time at latitudes poleward of about 20˚, while it mainly decreases at more equatorward latitudes. The temporal variation of the zonal flow in both hemispheres is significantly correlated at latitudes less than about 20˚. The zonal flow is larger in the southern hemisphere than the northern one, and this North–South asymmetry increases with depth. Details of the North–South asymmetry of zonal and meridional flow reflect the North–South asymmetry of the magnetic flux. The North–South asymmetries of the flows show hints of a variation with the solar cycle.  相似文献   

19.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

20.
The effect of meridional circulation on spherical shell dynamos is considered in the Parker approximation. We demonstrate that the type of the exited solution crucially depend on the intensity of the meridional circulation. If the circulation is equatorward or if it is polarward however do not exceed some critical value, an oscillating solution in form of an equatorward traveling wave is excited. If the polarward meridional circulation becomes too intensive the solution becomes steady growing. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号