首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-linear, three-dimensional, time-dependent fluid simulations of whistler wave turbulence are performed to investigate role of whistler waves in solar wind plasma turbulence in which characteristic turbulent fluctuations are characterized typically by the frequency and length-scales that are, respectively, bigger than ion gyrofrequency and smaller than ion gyroradius. The electron inertial length is an intrinsic length-scale in whistler wave turbulence that distinguishably divides the high-frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large-scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like   k −7/3  spectrum. By contrast, the small-scale turbulent fluctuations exhibit a Navier–Stokes-like evolution where characteristic turbulent eddies exhibit a typical   k −5/3  hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.  相似文献   

2.
In the present paper we have studied the nonlinear dynamical equation of Landau damped kinetic Alfvén wave (KAW) to investigate the nonlinear evolution of KAW and the resulting turbulent spectra in solar wind plasmas. We have introduced a parameter g which governs the coupling between the amplitude of the pump KAW and the density perturbation. The numerical solution has been carried out to see the dependence on the parameter g in the nonlinear part of our equation. Our results reveal the formation of damped localized structures of KAW as well as steepening of the turbulent spectra by increasing g when damping is taken into account. The power spectra of magnetic field fluctuations indicate the redistribution of energy among the higher wave numbers. Each power spectrum with and without damping splits up into two different scaling ranges, Kolmogorov scaling followed by a steeper scaling. The steepening in the power spectra with Landau damping is more than without Landau damping case (for the same value of g). This type of steeper spectra has also been observed in the solar wind and is attributed to the Landau damping effects.  相似文献   

3.
We present an analytical model to explore the magnetic field turbulent spectrum by coupled high-frequency kinetic Alfvén wave (KAW) and slow mode of Alfvén wave (AW). The spectrum is computed as a realization of energy cascades from larger to smaller scales for a specific case of solar wind plasma at 1 AU. A two-fluid technique is implemented for the derivation of model equations leading two wave modes. These coupled, nonlinear equations are solved numerically. The nonlinearity in the system arises due to nonlinear ponderomotive force, which is believed to be responsible for the wave localization and magnetic islands formation. The numerical results show that the magnetic islands grow with time and attain a quasi-steady state after the modulation instability is saturated. The magnetic field spectrum and associated spectral indices are computed near the time of saturation of instability. The simulated spectrum in dispersion region follows a power-law with an index of ?2.5. The steeper spectrum could be attributed as energy transfer from larger to smaller scales and helps to study turbulence in solar wind. The magnetic field spectrum and spectral index show a good agreement with the observation of solar wind turbulent spectra.  相似文献   

4.
It is generally accepted that pick-up ions act as a seed population for anomalous cosmic rays originating at the solar wind termination shock. We believe that the ion pre-acceleration process operating in the heliosphere up to the termination shock can be very important to inject the ions into the shock acceleration process. The pick-up ions pre-accelerated by solar wind turbulences have already a pronounced high energy tail when they reach the shock. Some fraction of these ions can experience further acceleration up to energies of anomalous cosmic rays by means of shock drift and diffusive acceleration. In the present paper the shock drift acceleration of pick-up ions suffering multiple reflection due to abrupt changes in both the strength and direction of the magnetic field through the shock is considered. The reflection process operates for high velocity particles different from the reflection by the electric cross-shock potential. During the first reflection the mean kinetic energy of pick-up ions increases by approximately a factor of 10. Reflected particles have highly anisotropic velocity distribution. Subsequent excursion of the particles in the turbulent upstream flow leads to diffusion in pitch-angle space and, as a result, the particles can return to the shock again suffering, thus, multiple encounters. In order to describe the motion of particles in the upstream and down streamparts of the flow we solve the Fokker-Plank transport equation for anisotropic velocity distribution function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The numerical simulations of the model equation governing the nonlinear evolution of kinetic Alfvén wave (KAW) in solar wind plasmas are performed. The nonlinear dynamical equation of KAW satisfies the modified nonlinear Schrödinger MNLS equation when the ponderomotive nonlinearity is incorporated in the KAW dynamics. The effect of Landau damping is taken into account in the KAW dynamics. The coherent (in the absence of Landau damping) and damped (with Landau damping) localized structures of pump KAW as a consequence of ponderomotive nonlinearity have been studied in the solar wind at 1 AU. A weak whistler signal propagating in these localized structures is amplified which leads to the development of its own coherent and damped localized structures. Magnetic field (KAW) and electric field (whistler wave) power spectra and their spectral indices are calculated. Our results reveal the change in spectral index because of the damping effect which has good agreement with the observations. These damped structures and steeper spectra may be one of the reasons responsible for the plasma heating and particles acceleration in solar wind.  相似文献   

6.
We have performed 3-D numerical simulations of compressible convection under the influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle coupling between convection, rotation and magnetic fields in the solar convection zone. We show that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation driven by the convection. These simulations also indicate that the mean toroidal and poloidal magnetic fields are small compared to their fluctuating counterparts, most of the magnetic energy being contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.  相似文献   

7.
The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He+ ions in the solar wind. The model includes the effects of pitch-ang'e diffusion due to interplanetary Alfvén waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range 0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of a variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters we can model the measured energy spectra of the pick-up ions reasonably well. It is shown that the measured differential energy density of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

8.
史晨 《天文学报》2023,(3):30-130
磁云因其独特的磁场结构经常是重大灾害性空间天气的驱动源.近来从磁云的边界层结构、环向通量、大尺度结构等方面关于磁云传播的动力学演化过程的研究取得了一些进展.在磁云边界存在一个由于磁场重联而形成的边界层结构.在磁云传播过程中,这种发生在边界处的磁场重联可能会把磁云的磁场剥蚀掉,进而引起其磁通量绳结构环向通量的减少以及不对称.在磁云内部,经常会观测到多个子通量绳结构.这些特性各异的子通量绳可以通过磁场重联而合并,进而引起磁云磁结构的改变.关于磁云大尺度磁场拓扑位形的演化机制,除了较早提出的交换重联外,目前的研究表明在行星际空间中,磁云边界处的重联过程也可以将磁云闭合或半开放的磁场线打开或断开.尽管在相关研究中已经取得了较大进展,但关于磁云传播的动力学演化过程还有许多问题尚不清楚.在行星际小尺度磁通量绳边界也发现了边界层结构,那么磁云是否会因剥蚀而成为小尺度通量绳?磁云内子通量绳结构在相互作用中会不会引起某些不稳定性而导致整个通量绳系统的崩溃?这些问题的解决还有待于进一步的理论、观测和数值模拟研究.  相似文献   

9.
C. B. Wang  Bin Wang  L. C. Lee 《Solar physics》2014,289(10):3895-3916
A scenario is proposed to explain the preferential heating of minor ions and differential-streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test-particle simulations that minor ions can be nearly fully picked up by intrinsic Alfvén-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high-frequency ion-cyclotron waves and low-frequency Alfvén waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave–particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the low-frequency Alfvén waves. As a result, the ion is picked up by these Alfvén-cyclotron waves. However, minor ions can only be partially picked up in the corona because of the low wave energy density and low plasma β. During the pickup process, minor ions are stochastically heated and accelerated by Alfvén-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfvén waves and ion-cyclotron waves is important in the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in-situ and remote features observed in the solar wind and solar corona.  相似文献   

10.
Information concerning the coronal expansion is carried by solar wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to be coming from coronal holes. Although the sources of the IS plasma are uncertain, the heavy ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at T 2.1 × 106 K while that of Fe is frozen in farther out at 1.5 × 106 K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe16+ ions, not usually found in IS flows, and the derived coronal freezing in temperatures are significantly higher; for two of the best cases values of 3.4 × 106 K were found for the O ions and 2.9 × 106 K for Fe ions. The coronal sources of some of these ionizationally hot flows are identified as solar flares. The appearance of abnormally depressed kinetic temperatures in solar wind coming from flare-heated coronal gas lends support to earlier speculation that flares can expel plasma enclosed in magnetic bottles or bubbles. In transit to 1 AU the gas is sufficiently isolated from the hot corona that it cools anomalously.The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.  相似文献   

11.
Times for accumulation of chemically significant dosages on icy surfaces of Centaur, Kuiper Belt, and Oort Cloud objects from plasma and energetic ions depend on irradiation position within or outside the heliosphere. Principal irradiation components include solar wind plasma ions, pickup ions from solar UV ionization of interstellar neutral gas, energetic ions accelerated by solar and interplanetary shocks, including the putative solar wind termination shock, and galactic cosmic ray ions from the Local Interstellar Medium (LISM). We present model flux spectra derived from spacecraft data and models for eV to GeV protons at 40 AU, a termination shock position at 85 AU, and in the LISM. Times in years to accumulate dosages ~100 eV per molecule are computed from the spectra as functions of sensible surface depth less than one centimeter at unit density.The collisional resurfacing model of Luu and Jewitt is reconsidered in thecontext of depth-dependent dosage rates from plasma, suprathermal,and higher energy protons, and global exposure, by micrometeoroiddust grain impacts, of moderately irradiated red material below athin crust of heavily irradiated neutral material. This material should be more visible on dynamically `cold’ objects in the ~40 AU region.  相似文献   

12.
Chalov  S.V.  Fahr  H.J. 《Solar physics》1999,187(1):123-144
As known for a long time, interstellar wind neutral helium atoms deeply penetrate into the inner heliosphere and, when passing through the solar gravity field, form a strongly pronounced helium density cone in the downwind direction. Helium atoms are photoionized and picked-up by the solar wind magnetic field, but as pick-up ions they are not simply convected outwards with the solar wind in radial directions as assumed in earlier publications. Rather they undergo a complicated diffusion-convection process described here by an appropriate kinetic transport equation taking into account adiabatic cooling and focusing, pitch angle scattering and energy diffusion. In this paper, we solve this equation for He+pick-up ions which are injected into the solar wind mainly in the region of the helium cone. We show the resulting He+pick-up ion density profile along the orbit of the Earth in many respects differs from the density profile of the neutral helium cone: depending on solar-wind-entrained Alfvénic turbulence levels, the density maximum when looking from the Earth to the Sun is shifted towards the right side of the cone, the ratio of peak-densities to wing-densities varies and a left-to-right asymmetry of the He+-density profile is pronounced. Derivation of interstellar helium parameters from these He+-structures, such as the local interstellar medium (LISM) wind direction, LISM velocity and LISM temperature, are very much impeded. In addition, the pitch-angle spectrum of He+pick-up ions systematically becomes more anisotropic when passing from the left to the right wing of the cone structure. All effects mentioned are more strongly pronounced in high velocity solar wind compared to the low velocity solar wind.  相似文献   

13.
We have presented the localization of kinetic Alfvén wave (KAW) in intermediate β plasma (m e /m i ?β?1) by developing a model based on pump kinetic Alfvén wave and finite amplitude magnetosonic fluctuations. When KAW is perturbed by these background magnetosonic fluctuations, filamentary structures of KAW magnetic field are formed. First, a semi analytical model based on paraxial approximation has been developed to understand this evolution process. Localized structures and magnetic fluctuation spectrum of KAW has also been studied numerically for finite frequency of KAW. The calculated magnetic fluctuation spectrum follows two types of scalings. Above the proton gyroradius scale lengths (in inertial range), spectrum follows Kolmogorovian scaling. Below this scale dispersion starts and the spectrum steepens to about \(k_{x}^{-2.5}\) . The result shows the steepening of power spectra which can be responsible for particle acceleration in solar wind due to the energy transfer from larger to smaller lengthscales. Obtained magnetic turbulent spectra are consistent with observations of Cluster spacecraft in solar wind.  相似文献   

14.
There are many space plasma physics problems that are both majorand unsolved, there are other problems for which the categorization of solved or unsolved depends on one's point of view, and there are still other problems that are well understood but unsolved in the sense that quantitative predictions cannot be made although the basic physics is known. The following discussion will, of necessity, be limited and selective. The nature of the Alfvénic turbulence in the solar wind remains a major unsolved mystery: Why is the power spectrum of this anisotropic, compressible, magnetofluid often Kolmogoroff-like, with a power spectral index close to the -5/3 value characteristic of normal fluids? What is the three-dimensional symmetry of the turbulence? Are the magnetic fields quasi-two-dimensional and stochastic, or have they been highly refracted by small velocity shears? What is the origin of the -1 slope of the energy containing scales? What is the relationship between the turbulent fields and the diffusion coefficients for energetic particle transport parallel and perpendicular to the ambient magnetic field? A general problem in turbulence research is the relationship between the fluid approximation and the kinetic physics that describes the dissipation and damping of fluctuations. There is still much to learn about solar flares, coronal mass ejections and magnetospheric substorms. Another major puzzle is how to quantitatively describe the interaction of the solar wind with the interstellar medium; a problem probably not amenable to solution using fluid equations.  相似文献   

15.
Expressions for cross-correlation functions and spectra of weak interplanetary scintillations are deduced taking into account the solar wind flow structure. The paper discusses the influence of large-scale currents and small-scale velocity fluctuations distributed under the normal and lognormal laws.  相似文献   

16.
In previous publications the author considered how breaking buoyancy waves and the thermal source arising due to different absorption coefficients of solar and atmospheric radiation fluxes contributed to turbulence. In this study, the contribution to turbulence made by the dynamical source arising in consequence of convective instability of large-scale atmospheric motions is examined. Its value is estimated from experimental wind speed data for the atmosphere of Venus. The contributions of the indicated sources of turbulent energy are compared. The rate of dissipation of kinetic energy due to molecular viscosity is demonstrated to be several orders of magnitude less than the rate of dissipation necessary to maintain an invariable superrotation pattern. This is an additional argument for the permanent existence of turbulence in the atmosphere of Venus, which many authors consider doubtful. It is demonstrated why turbulence is present at the atmospheric stratification that seems to be stable.  相似文献   

17.
In the present work, the generation of large-scale zonal flows and magnetic field by short-scale collision-less electron skin depth order drift-Alfven turbulence in the ionosphere is investigated. The self-consistent system of two model nonlinear equations, describing the dynamics of wave structures with characteristic scales till to the skin value, is obtained. Evolution equations for the shear flows and the magnetic field is obtained by means of the averaging of model equations for the fast-high-frequency and small-scale fluctuations. It is shown that the large-scale disturbances of plasma motion and magnetic field are spontaneously generated by small-scale drift-Alfven wave turbulence through the nonlinear action of the stresses of Reynolds and Maxwell. Positive feedback in the system is achieved via modulation of the skin size drift-Alfven waves by the large-scale zonal flow and/or by the excited large-scale magnetic field. As a result, the propagation of small-scale wave packets in the ionospheric medium is accompanied by low-frequency, long-wave disturbances generated by parametric instability. Two regimes of this instability, resonance kinetic and hydrodynamic ones, are studied. The increments of the corresponding instabilities are also found. The conditions for the instability development and possibility of the generation of large-scale structures are determined. The nonlinear increment of this interaction substantially depends on the wave vector of Alfven pumping and on the characteristic scale of the generated zonal structures. This means that the instability pumps the energy of primarily small-scale Alfven waves into that of the large-scale zonal structures which is typical for an inverse turbulent cascade. The increment of energy pumping into the large-scale region noticeably depends also on the width of the pumping wave spectrum and with an increase of the width of the initial wave spectrum the instability can be suppressed. It is assumed that the investigated mechanism can refer directly to the generation of mean flow in the atmosphere of the rotating planets and the magnetized plasma.  相似文献   

18.
The occurrence of a nonlinear turbulent energy cascade in solar wind plasma has been recently established through the observation of an exact law from spacecraft measurements. The main results obtained in the fast, polar wind measured by Ulysses spacecraft are reviewed here. In particular, the turbulent cascade is seen as the mean to provide the energy necessary for the local heating in the non-adiabatic expansion of the solar wind. The importance of the density fluctuations in enhancing the turbulent energy transport is also evidenced. The ecliptic wind data measured by Ulysses are studied here in the same framework. This has been done by separating fast and slow streams, in order to avoid mixing of different physical conditions. The results further support the need for separate analysis of the two types of wind.  相似文献   

19.
Interplanetary pick-up ions originate from ionizations of neutral interstellar atoms in the heliosphere. Over the past periods it was generally expected that after pick-up by the frozen-in solar wind magnetic fields these ions quickly isotropize in velocity space by strong pitch- angle scattering, they do, however, not assimilate to the ambient solar wind ions. Meanwhile careful investigations of pick-up ion data obtained with the plasma analyzers on AMPTE and ULYSSES could clearly reveal that, especially at periods of flow-aligned fields, noticeably anisotropic distributions must prevail. To better understand the evolutionary tracks of pick-up ions in interplanetary phase-space we carried out an injection study which takes into account all relevant convection and diffusion processes, i.e. describing pitch angle scattering, adiabatic cooling, drifts and energy diffusion. As demonstrated here particles injected at 1 AU establish a distribution function with substantial anisotropies up to distances beyond 6 AU. Only under the action of fairly strong isotropic turbulence levels a trend towards isotropy can be recognized. The bulk velocity of the injected pick-up ions turns out to be remarkably smaller than the solar wind velocity. It also is obvious that pick-ups are strongly spread out from that solar wind plasma parcel into which they were originally implanted. As one consequence it must be concluded that the derivation of interstellar He gas parameters, using He pick-up ion flux data, require appreciable caution. Due to anisotropic spatial diffusion the location of the LISM helium cone axis, i.e. the LISM wind vector, and the LISM helium temperature are hidden in the associated He+pick-up ion flux patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号