首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.  相似文献   

2.
The chemical compositions of the primordial atmospheres of Venus, Earth and Mars have long been a topic of debate between the experts. Some believe that the original atmospheres were a product of outgassed volatiles from the newly accreted terrestrial planets and that these atmospheres consisted primarily of carbon dioxide, nitrogen, water vapor and residual hydrogen and helium (e.g., Lewis and Prinn, <it>Planets and their Atmospheres,</it> Academic Press, Orlando, FL, 1984, pp. 62–63, 81–84, 228–231, 383). Still others think the earliest atmospheres were composed of the gas components of the solar nebula from which the solar system formed (i.e., hydrogen, helium, methane, ammonia and water). I consider the latter to be the correct scenario. Presented herein is a proposed mechanism by which the original atmospheres of Venus, Earth and Mars were transformed to atmospheres rich in carbon dioxide and nitrogen. An explanation is proposed for why water is so common on the surface of Earth and so scarce on the surfaces of Venus and Mars. Also presented are the effects the “great impact” (single cataclysmic event that was responsible for producing the Earth–Moon system) had upon the early atmosphere of Earth. The origin, structure and composition of the impacting object are determined through deductive analyses.  相似文献   

3.
The results of two theoretical investigations concerning the destabilizing effects of radiative transfer on stably stratified shear flows are applied to the CO2 atmospheres Mars and Venus. It is found that radiatively modified critical Richardson numbers remain below plausible atmospheric values throughout the stratospheres of both planets. Above certain altitudes, however, in the upper stratospheres of these planets (≈50 km on Mars and ≈100 km on Venus), critical Richardson numbers begin to increase significantly above the nonradiating critical value. This trend continues until, in the lower thermosphere, critical Richardson numbers eventually surpass atmospheric values. This effect could lead to observably greater turbulent mixing in the upper atmospheres of Mars and Venus than might be expected from terrestrial observation and from nonradiating theoretical calculations.  相似文献   

4.
Consequences of a heavy bombardment for the atmospheres of Earth and Mars are investigated with a stochastic model. The main result is the dominance of the accumulation. The atmospheric pressure is strongly increasing both for Earth and Mars in the course of an enhanced bombardment. The effect of atmospheric erosion is found to be minor, regarding escape during meteorite entry, in the expanding vapor plume, and ejection due to free-surface motion. The initial atmospheric surface pressure if comparable to the modern value turns out as a less important additive constant of the final pressure. Impactor retention and atmospheric erosion are parametrized in terms of scaling laws, compatible with recent numerical simulations. The dependence on impactor size, atmospheric and planetary parameters is analyzed among alternative models and numerical results. The stochastic model is fed with the net replenishment originating from impactor material and the loss of preexisting atmospheric gas. Major input parameters are the total cumulative impactor mass and the relative mass of atmophile molecules in comets and asteroids. Input size distributions of the impactor ensemble correspond to presently observed main belt asteroids and KBOs. Velocity distributions are taken from dynamical simulations for the Nice model. Depending on the composition of large cometary impactors, the Earth could acquire a more massive atmosphere, a few bars in terms of surface pressure, mostly as CO and CO2. For Mars accumulation of 1–4 bars of CO and CO2 requires an asteroidal ‘late veneer’ of the order of 1024 g containing 2% atmophiles.  相似文献   

5.
James B. Pollack 《Icarus》1979,37(3):479-553
In this paper, we review the observational data on climatic change for the terrestrial planets, discuss the basic factors that influence climate, and examine the manner in which these factors may have been responsible for some of the known changes. Emphasis is placed on trying to understand the similarities and differences in both the basic factors and their climatic impacts on Venus, the Earth, and Mars. Climatic changes have occurred on the Earth over a broad spectrum of time scales that range from the elevated temperatures of Pre-Cambrian times (~109 years ago), through the alternating glacial and interglacial epochs of the last few million years, to the small but significant decadal and centurial variations of the recent past. Evidence for climatic change on Mars is given by certain channel features, which suggest an early to intermediate aged epoch of warmer and wetter climate, and by layered polar deposits, which imply more recent periodic climate variations. No evidence for climatic change on Venus exists as yet, but comparison of its present climate state with that of outer terrestrial planets offers important clues on some of the mechanisms affecting climate. The important determinants of climate for a terrestrial planet include the Sun's output, astronomical perturbations of its orbital and axial characteristics, the gaseous and particulate content of its atmosphere, its land surface, volatile reservoirs, and its interior. All these factors appear to have played major roles in causing climatic changes on the terrestrial planets. Despite a lower solar luminosity in the past, the Earth and Mars have had warmer periods in their early history. In both cases, a more reducing atmosphere may have been the responsible agent through an enhanced greenhouse effect. In this paper, we present detailed calculations of the effect of atmospheric pressure and composition on the temperature state of Mars. We find that the higher temperature period is easier to explain with a reducing atmosphere than with the current fully oxidizing one. Both the very high surface temperature and massive atmosphere of Venus may be the result of the solar flux being a factor of two higher at its orbit than at the Earth's orbit. This difference may have led to a runaway greenhouse effect on Venus, i.e., the emplacement of volatiles entirely in the atmosphere rather than mostly in surface reservoirs. But if Venus formed with relatively little or no water, it may have always had an oxidizing atmosphere. In this case, a lower solar luminosity would have led to a moderate surface temperature in Venus' early history. Quasi-periodic variations in orbital eccentricity and axial obliquity may have contributed to the alternation between Pleistocene glacial and interglacial periods in the case of the Earth and to the formation of the layered polar deposits in the case of Mars. In this paper, we postulate that two mechanisms, acting jointly, account for the creation of the laminated terrain of Mars: dust particles serve as nucleation centers for the condensation of water vapor and carbon dioxide. The combined dust-H2O-CO2 particle is much larger and so has a much higher terminal velocity than either a dust-H2O or a plain dust particle. As a result, dust and water ice are preferentially deposited in the polar regions. In addition, we postulate that the obliquity variations are key drivers of the periodic layering because of their impact on both atmospheric pressure and polar surface temperature, which, in turn, influence the amounts of dust and water ice in the atmosphere. But eccentricity and precessional changes probably also play important roles in creating the polar layers. The drifting of continents on the Earth has caused substantial climatic changes on individual continents and may have helped to set the stage for the Pleistocene ice ages through a positioning of the continents near the poles. While continental drift apparently has not occurred on Mars, tectonic distortions of its lithosphere may, in some circumstances, cause an alteration in the mean value of that planet's obliquity, which would significantly impact its climate. Atmospheric aerosols can influemce climate through their radiative effects. In the case of the Earth, volcanic aerosols appear to have contributed to past climatic changes, while consideration needs to be given to the future impact of man-generated aerosols. In the case of Mars, the atmospheric temperature structure and thereby atmospheric dynamics are greatly altered by suspended dust particles. The sulfuric acid clouds of Venus play a major role in its heat balance. Cometary impacts may have added substantial quantities of water vapor and sulfur gases to Venus' atmosphere and thus have indirectly affected its cloud properties. Calculations presented in this paper indicate substantial changes in surface temperature accompany these compositional changes.  相似文献   

6.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

7.
It is generally supposed that the atmospheres of the terrestrial planets were formed by secondary degassing processes. We propose, instead, that they are of primary origin, forming as an immediate and necessary consequence of the final stages of planetary accretion. Once the planetary embryo reached a critical size, the impacting material began to vaporize. The atmosphere, so created, then decelerated other impacting material, thus limiting the rate of atmospheric growth. We show that, given reasonable assumptions concerning the chemical composition of the impacting material, an acceptable model for the early atmosphere of the Earth, and the present atmospheres of Venus and Mars results.A discussion of the noble gas data for the terrestrial atmosphere indicates that these can be readily reconciled with an impact origin.  相似文献   

8.
This paper deals with two common problems and then considers major aspects of chemistry in the atmospheres of Mars and Venus. (1) The atmospheres of the terrestrial planets have similar origins but different evolutionary pathways because of the different masses and distances to the Sun. Venus lost its water by hydrodynamic escape, Earth lost CO2 that formed carbonates and is strongly affected by life, Mars lost water in the reaction with iron and then most of the atmosphere by the intense meteorite impacts. (2) In spite of the higher solar radiation on Venus, its thermospheric temperatures are similar to those on Mars because of the greater gravity acceleration and the higher production of O by photolysis of CO2. O stimulates cooling by the emission at 15 μm in the collisions with CO2. (3) There is a great progress in the observations of photochemical tracers and minor constituents on Mars in the current decade. This progress is supported by progress in photochemical modeling, especially by photochemical GCMs. Main results in these areas are briefly discussed. The problem of methane presents the controversial aspects of its variations and origin. The reported variations of methane cannot be explained by the existing data on gas-phase and heterogeneous chemistry. The lack of current volcanism, SO2, and warm spots on Mars favor the biological origin of methane. (4) Venus’ chemistry is rich and covers a wide range of temperatures and pressures and many species. Photochemical models for the middle atmosphere (58-112 km), for the nighttime atmosphere and night airglow at 80-130 km, and the kinetic model for the lower atmosphere are briefly discussed.  相似文献   

9.
Atmospheric angular momentum variations of a planet are associated with the global atmospheric mass redistribution and the wind variability. The exchange of angular momentum between the fluid layers and the solid planet is the main cause for the variations of the planetary rotation at seasonal time scales. In the present study, we investigate the angular momentum variations of the Earth, Mars and Venus, using geodetic observations, output of state-of-the-art global circulation models as well as assimilated data. We discuss the similarities and differences in angular momentum variations, planetary rotation and angular momentum exchange for the three terrestrial planets. We show that the atmospheric angular momentum variations for Mars and Earth are mainly annual and semi-annual whereas they are expected to be “diurnal” on Venus. The wind terms have the largest contributions to the LOD changes of the Earth and Venus whereas the matter term is dominant on Mars due to the CO2 sublimation/condensation. The corresponding LOD variations (ΔLOD) have similar amplitudes on Mars and Earth but are much larger on Venus, though more difficult to observe.  相似文献   

10.
Geological exploration of the solar system shows that solid-surfaced planets and satellites are subject to endogenic processes (volcanism and tectonism) and exogenic processes (impact cratering and gradation). The present appearance of planetary suffaces is the result of the complex interplay of these processes and is the linked to the evolution of planets and their environments. Terrestrial planets that have dynamic atmospheres are Earth, Mars, and Venus. Atmospheric interaction with the surfaces of these planets, oraeolian activity, is a form of gradation. The manifestation of aeolian activity is the weathering and erosion of rocks into sediments, transportation of the weathered debris (mostly sand and dust) by the wind, and deposition of windblown material. Wind-eroded features include small-scale ventifacts (wind-sculptured rocks) and large-scale landforms such as yardangs. Wind depositional features include dunes, drifts, and mantles of windblown sediments. These and other aeolian features are observed on Earth, Mars, and Venus.  相似文献   

11.
We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with H2O being the second most abundant gas. Our results predict that the atmospheres formed during accretion of the Earth and Mars were probably H2-rich unless the accreted material was dominantly CI and CM carbonaceous chondritic material. We also predict significant amounts of S, P, Cl, F, Na, and K in accretionary atmospheres at high temperatures (1500-2500 K). Finally, our results may be useful for interpreting spectroscopic observations of accreting extrasolar terrestrial planets.  相似文献   

12.
The MIPAS instrument on board Envisat, in Earth orbit, the PFS and OMEGA instruments on Mars Express, and VIRTIS on board Venus Express are currently providing a dataset of limb measurements of the CO2 atmospheric fluorescence emission at 4.3‐μm from the upper atmosphere of the three planets. These measurements represent an excellent dataset to perform comparative studies between the terrestrial planets’ upper atmospheres, and also to test our theoretical understanding of these emissions. In order to exploit these datasets, we apply a set of non-local thermodynamic equilibrium (non-LTE) models developed at the IAA/CSIC, in Granada, Spain, to a selection of data. In general, the models can explain the main spectral features of the measurements, and also the altitude and solar zenith angle variations. However, the simulations for Mars and Venus give an incorrect ratio of the emissions at two wavelengths, 4.4 and . In order to explain this deficiency, a revision of the most uncertain non-LTE energy transfer parameters has been performed. The quenching rate of ν3 quanta of high-energy CO2 states by CO2 itself could reduce the model-data discrepancy if increased by a factor 2-4, still within its current uncertainty range. This factor, however, is subject to the uncertainty in the thermal structure. A number of simulations with the non-LTE models were also used to study and compare the role of radiative transfer in this spectral region in the three terrestrial planets. Sensitivity studies of density and temperature are also presented, and they permit an analysis of how the differences between the planets and between the three instruments affect their sounding capabilities.  相似文献   

13.
The question whether life originated on Earth or elsewhere in the solar system has no obvious answer, since Earth was sterilized by the Moon-forming impact and possibly also during the LHB, about 700 Ma after the formation of the solar system. Seeding by lithopanspermia has to be considered. Possible sources of life include Earth itself, Mars, Venus (if it had a more benign climate than today) and icy bodies of the solar system. The first step of lithopanspermia is the ejection of fragments of the surface into space, which requires achieving at least escape velocity. As the velocity distribution of impact ejecta falls off steeply, attention is drawn to bodies with lower escape velocities. Ceres has had, or still has, an ocean more than 100 km deep, with hydrothermal activity at its rocky core. The possible presence of life, its relative closeness to the terrestrial planets and Ceres' low escape velocity of 510 m/s suggest that Ceres could well be a parent body for life in the solar system.Icy impact ejecta - hence glaciopanspermia - from Ceres will be subject to evaporation of volatiles. Spores may be loosened by evaporation and enter the atmospheres of the terrestrial planets as micrometeorites.The seeding of the terrestrial planets from Ceres would result in (1) detection of life in the crustal layers of Ceres; (2) a commonality of Cerean life with Terran and possible Martian and Venusian life and (3) biomarkers of Cerean life, which might be found in the ice at the Moon's poles and on the surface of other main belt asteroids.  相似文献   

14.
It is often assumed that the terrestrial worlds have experienced identical impact regimes over the course of their formation and evolution, and, as a result, would have started life with identical volatile budgets. In this work, through illustrative dynamical simulations of the impact flux on Venus, the Earth, and Mars, we show that these planets can actually experience greatly different rates of impact from objects injected from different reservoirs. For example, we show scenarios in which Mars experiences far more asteroidal impacts, per cometary impactor, than Venus, with the Earth being intermediate in value between the two. This difference is significant, and is apparent in simulations of both quiescent and highly stirred asteroid belts (such as could be produced by a mutual mean-motion resonance crossing between Jupiter and Saturn, as proposed in the Nice model of the Late Heavy Bombardment). We consider the effects; such differences would have on the initial volatilisation of the terrestrial planets in a variety of scenarios of both endogenous and exogenous hydration, with particular focus on the key question of the initial level of deuteration in each planet's water budget. We conclude that each of the terrestrial worlds will have experienced a significantly different distribution of impactors from various reservoirs, and that the assumption that each planet has the same initial volatile budget is, at the very least, a gross over-simplification.  相似文献   

15.
Laser-induced plasmas in various gas mixtures were used to simulate lightning in other planetary atmospheres. This method of simulation has the advantage of producing short-duration, high-temperature plasmas free from electrode contamination. The laser-induced plasma discharges in air are shown to accurately simulate terrestrial lightning and can be expected to simulate lightning spectra in other planetary atmospheres. Spectra from 240 to 880 nm are presented for simulated lightning in the atmospheres of Venus, Earth, Jupiter, and Titan. The spectra of lightning on the other giant planets are expected to be similar to that of Jupiter because the atmospheres of these planets are composed mainly of hydrogen and helium. The spectra of Venus and Titan show substantial amounts of radiation due to the presence of carbon atoms and ions and show CN Violet radiation. Although small amounts of CH4 and NH3 are present in the Jovian atmosphere, only emission from hydrogen and helium is observed. Most differences in the spectra can be understood in terms of the elemental ratios of the gas mixtures. Consequently, observations of the spectra of lightning on other planets should provide in situ estimates of the atmospheric and aerosol composition in the cloud layers in which lightning is occuring. In particular, the detection of inert gases such as helium should be possible and the relative abundance of these gases compared to major constituents might be determined.  相似文献   

16.
We propose a mechanism for the oxidation of gaseous CO into CO2 occurring on the surface mineral hematite (Fe2O3(s)) in hot, CO2-rich planetary atmospheres, such as Venus. This mechanism is likely to constitute an important source of tropospheric CO2 on Venus and could at least partly address the CO2 stability problem in Venus’ stratosphere, since our results suggest that atmospheric CO2 is produced from CO oxidation via surface hematite at a rate of 0.4 petagrammes (Pg) CO2 per (Earth) year on Venus which is about 45% of the mass loss of CO2 via photolysis in the Venusian stratosphere. We also investigated CO oxidation via the hematite mechanism for a range of planetary scenarios and found that modern Earth and Mars are probably too cold for the mechanism to be important because the rate-limiting step, involving CO(g) reacting onto the hematite surface, proceeds much slower at lower temperatures. The mechanism may feature on extrasolar planets such as Gliese 581c or CoRoT-7b assuming they can maintain solid surface hematite which, e.g. starts to melt above about 1200 K. The mechanism may also be important for hot Hadean-type environments and for the emerging class of hot Super-Earths with planetary surface temperatures between about 600 and 900 K.  相似文献   

17.
This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.  相似文献   

18.
Tobias Owen 《Icarus》1976,28(2):171-177
Predictions for the total inventory of outgassed volatiles on Mars can be developed by studying volatiles in meteorites, terrestial rocks, and the atmospheres of Venus, the Moon, and the Earth. Two models are presented following the basic assumption that the devolatilization of Mars has been analogous to that of the Earth. The recent discovery of a high abundance of argon in the Martian atmosphere appears to indicate that Mars has outgassed as completely as the Earth, but present uncertainties and lacunae in the essential data set permit several other interpretations.  相似文献   

19.
108 +/- 11 photons of the martian He 584-angstroms airglow detected by the Extreme Ultraviolet Explorer satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He+ by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(5), 3 x 10(4), and 7 x 10(3) cm-2 sec-1, respectively. The lifetime of helium on Mars is 5 x 10(4) years. The He outgassing rate, coupled with the 40Ar atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances of K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta (0)(t(0)/t)1/2 with delta (0) = 0/1, 0.04, and 0.0125 Byr-1 for Earth, Venus, and Mars, respectively. After a R2 correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassium is depleted by a factor of 2 in Venus and Mars. Mass ratios of helium and argon are close to 5 x 10(-9) and 2 x 10(-8) g/g in the interiors of all three planets. The implications of these results are discussed.  相似文献   

20.
The radiogenic and primordial noble gas content of the atmospheres of Venus, Earth, and Mars are compared with one another and with the noble gas content of other extraterrestial samples, especially meteorites. The fourfold depletion of 40Ar for Venus relative to the Earth is attributed to the outgassing rates and associated tectonics and volcanic styles for the two planets diverging significantly within the first billion or so years of their history, with the outgassing rate for Venus becoming much less than that for the Earth at subsequent times. This early divergence in the tectonic style of the two planets may be due to a corresponding early onset of the runaway greenhouse on Venus. The 16-fold depletion of 40Ar for Mars relative to the Earth may be due to a combination of a mild K depletion for Mars, a smaller fraction of its interior being outgassed, and to an early reduction in its outgassing rate. Venus has lost virtually all of its primordial He and some of its radiogenic He. The escape flux of He may have been quite substantial in Venus' early history, but much diminished at later times, with this time variation being perhaps strongly influenced by massive losses of H2 resulting from efficient H2O loss processes.Key trends in the primordial noble gas content of terrestial planetary atmospheres include (1) a several orders of magnitude decrease in 20Ne and 36Ar from Venus to Earth to Mars; (2) a nearly constant 20Ne/36Ar ratio which is comparable to that found in the more primitive carbonaceous chondrites and which is two orders of magnitude smaller than the solar ratio; (3) a sizable fractionation of Ar, Kr, and Xe from their solar ratios, although the degree of fractionation, especially for 36Ar/132Xe, seems to decrease systematically from carbonaceous chondrites to Mars to Earth to Venus; and (4) large differences in Ne and Xe isotopic ratios among Earth, meteorites, and the Sun. Explaining trends (2), (2) and (4), and (1) pose the biggest problems for the solar-wind implantation, primitive atmosphere, and late veneer hypotheses, respectively. It is suggested that the grain-accretion hypothesis can explain all four trends, although the assumptions needed to achieve this agreement are far from proven. In particular, trends (1), (2), (3), and (4) are attributed to large pressure but small temperature differences in various regions of the inner solar system at the times of noble gas incorporation by host phases; similar proportions of the host phases that incorporated most of the He and Ne on the one hand (X) and Ar, Kr, and Xe on the other hand (Q); a decrease in the degree of fractionation with increasing noble-gas partial pressure; and the presence of interstellar carriers containing isotopically anomalous noble gases.Our analysis also suggests that primordial noble gases were incorporated throughout the interior of the outer terrestial planets, i.e., homogeneous accretion is favored over inhomogeneous accretion. In accord with meteorite data, we propose that carbonaceous materials were key hosts for the primordial noble gases incorporated into planets and that they provided a major source of the planets' CO2 and N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号