首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract— Major element and sulfur concentrations have been determined in experimentally heated olivine‐hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400–600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ~75 ppm, which is significantly lower than that of the terrestrial mantle.  相似文献   

2.
Abstract— Five basaltic meteorites from the LaPaz ice field are paired on the basis of their mineralogy and texture, and represent a unique basalt type distinct from those in the Apollo or Luna sample collections. LaPaz Icefield (LAP) 02205, LAP 02224, LAP 02226, LAP 02436 and LAP 03632 all contain plagioclase, pyroxene, ilmenite, spinel, olivine, and minor troilite, metal, phosphate, baddeleyite and silica (cristobalite). Brown glassy melt veins are ubiquitous and cross the primary igneous texture. Plagioclase, the major mineral and occurring as laths in a subophitic texture, is of narrow compositional range, from An85–89. Pyroxene, also a major mineral, is strongly zoned, from augite and pigeonite cores to very iron‐rich rims. Ilmenite laths comprise approximately 3–5% of the basalts. Spinels show a large compositional range, comparable to that documented in Apollo 15 basalts, indicating an early chromite‐rich stage followed by an intermediate to late stage with Cr‐rich ulvöspinel. Relatively large, subhedral to skeletal olivine crystals (Fo46–62) are sparse, and are too Forich to be in equilibrium with the bulk rock, indicating that these are xenocrysts rather than phenocrysts. The presence of melt veins with a similar composition to the bulk rock, maskelynitized plagioclase feldspar, and metastable cristobalite indicate that these rocks underwent significant shock, between 30 and 50 GPa. Calculated oxygen fugacity, using spinel‐ilmenite‐iron metal equilibria, is within the range defined by previous studies of lunar materials. The bulk composition (low MgO) and low calculated temperatures, together with modelling calculations, indicate an origin by fractional crystallization of a more primitive low TiO2 parent liquid similar to Apollo 12 olivine basalt.  相似文献   

3.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

4.
Abstract— The Yamato nakhlites, Y‐000593, Y‐000749, and Y‐000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle‐stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late‐stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite‐magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite‐magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.  相似文献   

5.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

6.
Knowledge of Martian igneous and mantle compositions is crucial for understanding Mars' mantle evolution, including early differentiation, mantle convection, and the chemical alteration at the surface. Primitive magmas provide the most direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The new Martian meteorite Northwest Africa (NWA) 6234 is an olivine‐phyric shergottite. Its most magnesian olivine cores (Fo78) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that it represents a melt composition. Thermochemical calculations show that NWA 6234 not only represents a melt composition but is a primitive melt derived from an approximately Fo80 mantle. Thus, NWA 6234 is similar to NWA 5789 and Y 980459 in the sense that all three are olivine‐phyric shergottites and represent primitive magma compositions. However, NWA 6234 is of special significance because it represents the first olivine‐phyric shergottite from a primitive ferroan magma. On the basis of Al/Ti ratio of pyroxenes in NWA 6234, the minor components in olivine and merrillite, and phosphorus zoning of olivine, we infer that the rock crystallized completely at pressures consistent with conditions in Mars' upper crust. The textural intergrowths of the two phosphates (merrillite and apatite) indicate that at a very last stage of crystallization, merrillite reacted with an OH‐Cl‐F‐rich melt to form apatite. As this meteorite crystallized completely at depth and never erupted, it is likely that its apatite compositions represent snapshots of the volatile ratios of the source region without being affected by degassing processes, which contain high OH‐F content.  相似文献   

7.
The study of lunar magma evolution holds significant importance within the scientific community due to its relevance in understanding the Moon's thermal and geological history. However, the intricate task of unraveling the history of early volcanic activity on the Moon is hindered by the high flux of impactors, which have substantially changed the morphology of pristine volcanic constructs. In this study, we focus on a unique volcanic glass found in the lunar meteorite Northwest Africa 11801. This kind of volcanic glass is bead-like in shape and compositionally similar to the Apollo-14 and Apollo-17 very low-Ti glass. Our research approach involves conducting a comprehensive analysis of the petrology and mineralogy of the volcanic glass, coupled with multiple thermodynamic modeling techniques. Through the investigation, we aim to shed light on the petrological characteristics and evolutionary history of the glass. The results indicate that the primitive magma of the glass was created at 1398–1436°C and 8.3–11.9 kbar (166–238 km) from an olivine+orthopyroxene mantle source region. Then, the magma ascended toward the surface along a non-adiabatic path with an ascent rate of ~40 m s−1 or 0.2 MPa s−1. During the magma ascent, only olivine crystallized and the onset of magma eruption occurred at ~1320–1343°C. Finally, the glass cooled rapidly on the lunar surface with a cooling rate ranging between 20 and 200 K min−1. Considerable evidence from petrology, mineralogy, cooling rate, and the eruption rate of the glass beads strongly supports the occurrence of ancient explosive volcanism on the Moon.  相似文献   

8.
Tissint, a new unaltered piece of Martian volcanic materials, is the most silica‐poor and Mg‐Fe‐rich igneous rock among the “depleted” olivine‐phyric shergottites. Fe‐Mg zoning of olivine suggests equilibrium growth (<0.1 °C h?1) in the range of Fo80–56 and olivine overgrowth (Fo55–18) through a process of rapid disequilibrium (~1.0–5.0 °C h?1). The spatially extended (up to 600 μm) flat‐top Fe‐Mg profiles of olivine indicates that the early‐stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (55) consists of oscillatory phosphorus zoning at the impact‐induced melt domains and grew rapidly compared to the early to intermediate‐stage crystallization of the Tissint bulk. High‐Ca pyroxene to low‐Ca pyroxene and high‐Ca pyroxene to plagioclase ratios of Tissint are more comparable to the enriched basaltic and enriched olivine‐phyric shergottites. Dominance of augite over plagioclase induced augite to control the Ca‐buffer in the residual melt suppressing the plagioclase crystallization, which also caused a profound effect on the Al‐content in the late‐crystallized pyroxenes. Mineral chemical stability, phase‐assemblage saturation, and pressure–temperature path of evolution indicates that the parent magma entered the solidus and left the liquidus field at a depth of 40–80 km in the upper mantle. Petrogenesis of Tissint appears to be similar to LAR 06319, an enriched olivine‐phyric shergottite, during the early to intermediate stage of crystallization. A severe shock‐induced deformation resulted in remelting (10–15 vol%), recrystallization (most Fe‐rich phases), and exhumation of Tissint in a time scale of 1–8 yr. Tissint possesses some distinct characteristics, e.g., impact‐induced melting and deformation, forming phosphorus‐rich recrystallization rims of olivine, and shock‐induced melt domains without relative enrichment of LREEs compared to the bulk; and shared characteristics, e.g., modal composition and magmatic evolution with the enriched basaltic shergottites, evidently reflecting unique mantle source in comparison to the clan of the depleted members.  相似文献   

9.
The notion of a dry Moon has recently been challenged by the discovery of high water contents in lunar apatites and in melt inclusions within olivine crystals from two pyroclastic glasses. The highest and most compelling water contents were found in pyroclastic glasses that are not very common on the lunar surface. To obtain more representative constraints on the volatile content of the lunar interior, we measured the Zn content, a moderately volatile element, of mineral and rock fragments in lunar soils collected during Apollo missions. We here confirm that the Moon is significantly more depleted in Zn than the Earth. Combining Zn with existing K and Rb data on similar rocks allows us to anchor a new volatility scale based on the bond energy of nonsiderophile elements in their condensed phases. Extrapolating the volatility curve to H shows that the bulk of the lunar interior must be dry (≤1 ppm). This contrasts with the water content of the mantle sources of pyroclastic glasses, inferred to contain up to approximately 40 ppm water based on H2O/Ce ratios. These observations are best reconciled if the pyroclastic glasses derive from localized water‐rich heterogeneities in a dominantly dry lunar interior. We argue that, although late addition of 0.015% of a chondritic veneer to the Moon seems required to explain the abundance of platinum group elements (Day et al. 2007), the volatile content of the added material was clearly heterogeneous.  相似文献   

10.
Compositional analyses of lunar pyroclastic deposits   总被引:1,自引:0,他引:1  
The 5-band Clementine UVVIS data at ∼100 m/pixel were used to examine the compositions of 75 large and small lunar pyroclastic deposits (LPDs), and these were compared to representative lunar maria and highlands deposits. Results show that the albedo, spectral color, and inferred composition of most LPDs are similar to those of low-titanium, mature lunar maria. These LPDs may have consisted largely of fragmented basalt, with substantial components of iron-bearing mafic minerals (pyroxenes, olivine) and smaller amounts (if any) of volcanic glass. Several smaller LPDs also show substantial highland components. Three classes of very large deposits can be distinguished from most LPDs and from each other on the basis of crystallinity and possible titanium content of their pyroclastic components. One class has spectral properties that are dominated by high-titanium, crystallized “black beads” (e.g., Taurus-Littrow), a second consists of a mixture of high-titanium glasses and beads with a higher glass/bead ratio (Sulpicius Gallus) than that of Taurus-Littrow, and a third has a significant component of quenched iron-bearing volcanic glasses (Aristarchus) with possible moderate titanium contents. Although areally extensive, these three classes of very large pyroclastic deposits compose only 20 of the 75 deposits studied (∼27%), and eruption of such materials was thus likely to have been less frequent on the Moon.  相似文献   

11.
Abstract— We have studied a unique impact-melt rock, the Ramsdorf L chondrite, using optical and scanning microscopy and electron microprobe analysis. Ramsdorf contains not only clast-poor impact melt (Begemann and Wlotzka, 1969) but also a chondritic portion (>60 g) with what appears at low magnification to be a normal, well-defined chondritic texture. However, detailed studies at high magnification show that >90 vol% of the crystals in the chondritic portion were largely melted by the impact: the chondrules lack normal microtextures and are ghosts of the original features. The only relics from the precursor chondrules are olivine crystals, which have the highest melting temperature (~1620 °C). Pyroxene-rich chondrules were so extensively melted that no phenocrysts were preserved and the melt crystallized in situ before significant mixing with exterior olivine-rich melts. Fine-grained pyroxene chondrule ghosts have sharper boundaries with the matrix than porphyritic olivine and pyroxene chondrule ghosts, probably because pyroxene-rich melts are significantly more viscous. Complex textures that formed by injection of melt along cracks and fractures in relic olivines suggest that the chondritic portion of Ramsdorf formed directly from petrologic type 3–4 material by strong shock. We infer that Ramsdorf was largely melted by shock pressures of ~75–90 GPa and that chondrule ghosts and relic olivine phenocrysts were locally preserved by rapid cooling. Quenching was not due to the addition of cold clasts into the melt but to heterogeneous shock heating that only caused internal melting of large olivines and pyroxenes. Ramsdorf appears to be one of the most heavily shocked meteorites that has retained some trace of its original texture.  相似文献   

12.
The Tissint meteorite is a geochemically depleted, olivine‐phyric shergottite. Olivine megacrysts contain 300–600 μm cores with uniform Mg# (~80 ± 1) followed by concentric zones of Fe‐enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg‐rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg‐rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine‐phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti‐chromite → olivine (Mg# 74–63) + pyroxene (Mg# 76–65) + Cr‐ulvöspinel → olivine (Mg# 63–35) + pyroxene (Mg# 65–60) + plagioclase, followed by late‐stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two‐stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust.  相似文献   

13.
Abstract— Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A‐B‐C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set), ascended to the lunar surface, and erupted as a fire fountain. A barometer created from multiple saturation points provides a depth estimate of other glasses in the A‐B‐C trend and of the depths of assimilation. This barometer demonstrates that the Apollo 15 A‐B‐C trend originated over a depth range of ?460 km to ?260 km within the moon.  相似文献   

14.
15.
Abstract— We petrologically examined the Miller Range (MIL) 03346 nakhlite. The main‐phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36–38Fs24–22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa ≥ 55) and show normal zoning toward ferroan rims (Fa ≤ 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y‐) 000593. Although magnesian olivines of Y‐000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y‐000593.  相似文献   

16.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

17.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

18.
Abstract— The Nova 001 [= Nuevo Mercurio (b)] and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possibly diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of other known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.  相似文献   

19.
Two classes of volcanic plumes on Io   总被引:1,自引:0,他引:1  
Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ~1400 km in diameter formed around the Aten Patera caldera (311°W, 48°S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338°W, 45°N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255°W, 18°S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ~0.5 km sec?1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ~1.0 km sec?1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240° to 360°W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ~650°K are associated with the large plumes and temperatures <400°K with the small plumes. The typical eruption duration of the small plumes is at least several years; that of the large plumes appears to be of the order of days to weeks. The two classes therefore differ by more than two orders of magnitude in duration of eruption. Based on uv, visible, and infrared spectra, the small plumes seem to contain and deposit SO2 in their annuli whereas the large plumes apparently do not. Two other plumes that occur at either end of the linear feature Loki may be intermediate or hybrid between the two classes, exhibiting attributes of both. Additionally, Loki occurs in the area of overlap in the regional distributions of the two plume classes. Two distinct volcanic systems involving different volatiles may be responsible for the two classes. We propose that the discrete temperatures associated with the two classes are a direct reflection of sulfur's peculiar variation in viscosity with temperature. Over two temperature ranges (~400 to 430°K and >650°K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone of orange sulfur and a deeper zone of black sulfur. A low-temperature system driven by SO2 heated to 400 to 400°K by the orange sulfur zone seems the best model for the small plumes; a system driven by sulfur heated to >650°K by hot or even molten silicates in the black sulfur zone seems the best explanation for the large plume class. The large Pele-type plumes are apparently concentrated in a region of the satellite in which a thinner sulfur-rich crust overlies the tidally heated silicate lithosphere, so the black sulfur zone may be fairly shallow in this region. The Prometheus-type plumes are possibly confined to the equatorial belt by some process that concentrates SO2 fluid in the equatorial crust.  相似文献   

20.
Abstract– A petrographic and geochemical study was undertaken to characterize Jiddat al Harasis (JaH) 556, a howardite find from the Sultanate of Oman. JaH 556 is a polymict impact melt breccia containing highly shocked clasts, including mosaicized olivine and recrystallized plagioclase, set in a finely recrystallized vesicular matrix (grain diameter <5–10 μm). Plagioclase (An76–92) and clinopyroxene (En48–62Wo7–15) are associated with orthopyroxene and olivine clasts like in a howardite. JaH 556 oxygen isotope data indicate that it has an anomalous bulk‐rock composition as howardite, resulting from a mixture between HED material and at least one second reservoir characterized by a higher Δ17O. The bulk meteorite has a composition consistent with howardites, but it is enriched in siderophile elements (Ni = 3940 and Co = 159 ppm) arguing for a chondritic material as second reservoir. This is independently confirmed by the occurrence of chondrule relics composed of olivine (Fo56–80), orthopyroxene (En79Wo2), and plagioclase (An61–66). Based on oxygen isotopic signature, siderophile composition, and chondrule core Mg number (Fo80 and En79Wo2), it is proposed that JaH 556 is a howardite containing approximately 20% H chondrite material. This percentage is high compared with that observed petrographically, likely because chondritic material dissolved in the impact melt. This conclusion is supported by the observed reaction of orthopyroxene to olivine, which is consistent with a re‐equilibration in a Si‐undersaturated melt. JaH 556’s unique composition enlarges the spectrum of howardite‐analogs to be expected on the surface of 4 Vesta. Our data demonstrate that oxygen isotopic anomalies can be produced by a mixture of indigenous and impactor materials and must be interpreted with extreme caution within the HED group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号