首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We present Hα spectropolarimetry observations of a sample of 10 bright T Tauri stars, supplemented with new Herbig Ae/Be star data. A change in the linear polarization across Hα is detected in most of the T Tauri (9/10) and Herbig Ae (9/11) objects, which we interpret in terms of a compact source of line photons that is scattered off a rotating accretion disc. We find consistency between the position angle (PA) of the polarization and those of imaged disc PAs from infrared and millimetre imaging and interferometry studies, probing much larger scales. For the Herbig Ae stars AB Aur, MWC 480 and CQ Tau, we find the polarization PA to be perpendicular to the imaged disc, which is expected for single scattering. On the other hand, the polarization PA aligns with the outer disc PA for the T Tauri stars DR Tau and SU Aur and FU Ori, conforming to the case of multiple scattering. This difference can be explained if the inner discs of Herbig Ae stars are optically thin, whilst those around our T Tauri stars and FU Ori are optically thick. Furthermore, we develop a novel technique that combines known inclination angles and our recent Monte Carlo models to constrain the inner rim sizes of SU Aur, GW Ori, AB Aur and CQ Tau. Finally, we consider the connection of the inner disc structure with the orientation of the magnetic field in the foreground interstellar medium: for FU Ori and DR Tau, we infer an alignment of the stellar axis and the larger magnetic field direction.  相似文献   

2.
We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G- and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3–5 Myr. Our magnetic field maps show evidence for strong, complex multipolar fields similar to those obtained for young rapidly rotating main-sequence stars. Brightness maps indicate the presence of dark polar caps and low-latitude spots – these brightness maps are very similar to those obtained for other pre-main-sequence and rapidly rotating main-sequence stars.
Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star.
We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.  相似文献   

3.
We present new results from recent X-ray observations of the accreting pre-main sequence stars FU Orionis and T Tauri. XMM-Newton observations of the close binary system FU Ori reveal an unusual X-ray spectrum consisting of a cool moderately-absorbed component and a hot component viewed through much higher absorption. The two components thus originate in physically distinct regions. The double absorption spectrum is qualitatively different than observed in typical coronal sources and may signal either non-coronal emission or separate unresolved X-ray contributions from more than one star in the system. High-resolution Chandra imaging of the T Tau triple system shows that its X-ray emission is dominated by the optically-revealed northern component T Tau N. X-ray spectra of T Tau obtained with XMM can be acceptably fitted with a moderately absorbed two-temperature thermal plasma model. Its spectral properties are similar to those seen in coronal X-ray sources.  相似文献   

4.
The white dwarf in the eclipsing binary system V471 Tau is viewed through the atmosphere of the active K star prior to ingress and after egress. In the far UV the surface brightness of the hot white dwarf far outshines the K star emission. We can use this to probe the structure of the extended K star atmosphere along one line of sight, in absorption, on spatial scales of the radius of the white dwarf (10,000 km). The time series of HST/STIS spectra which show a hot (>250,000 K) extended (>1 K star radius) atmosphere around the K star. We see discrete structures in the velocity‐resolved spectra, on spatial scales of less than 100,000 km. The mean velocity is that expected of gas in co‐rotation with the K star, but the discrete velocity structures have excursions of up to 70 km/s from the mean. The mean temperature seems to increase with height above the K star photosphere. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We analyzed the spectra of eight T Tauri stars (T Tau, RY Tau, CO Ori, EZ Ori, GW Ori, GX Ori, V1044 Ori, and SU Aur) in the wavelength range from 1200 to 3100 Å taken with the STIS spectrograph from the Hubble Space Telescope. For each star, we found an upper limit on the interstellar extinction A v , which proved to be lower than the values obtained by different authors from optical observations. For T Tau and RY Tau, we found the upper limits on their luminosities, masses, and radii as well as the bolometric luminosity of the excess emission continuum. The latter is most likely associated with mass accretion from a protoplanetary disk. We show that the bulk of the emission continuum is radiated in the infrared. For these stars, we determined the ratio of the flux in the C IV 1550 doublet lines to the excess-continuum flux. This ratio proved to be two orders of magnitude lower than its values predicted by the accretion-shock (AS ) models developed by Lamzin (1998) and Calvet and Gullbring (1998). This result leads us to believe that for T Tau and RY Tau, the emission continuum originates in the accretion disk and/or in the boundary layer rather than in the AS, as has been assumed previously. This implies that in these stars, only a small fraction of the accreted matter passes through the AS, while the bulk of this matter settles in the equatorial plane of the star, passing through the boundary layer.  相似文献   

7.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

8.
Dust emission in the non-photospheric 10-μm continua of HL Tau and Taurus-Elias 7 (Haro6-10, GV Tau) is distinguished from foreground silicate absorption using a simple disc model with radial power-law temperature and mass–density distributions based on the IR–submm model of T Tauri stars by Adams, Lada & Shu with foreground extinction. The resulting 10-μm absorption profiles are remarkably similar to those of the field star Taurus-Elias 16 obtained by Bowey, Adamson & Whittet. The fitted temperature indices are 0.44 (HL Tau) and 0.33 (Elias 7) in agreement with Boss's theoretical models of the 200–300 K region, but lower than those of IR–submm discs (0.5–0.61; Mannings & Emerson); a significant fraction of the modelled 10-μm emission of HL Tau is optically thin, whilst that of Elias 7 is optically thick. We suggest that HL Tau's optically thin component arises from silicate dust within low-density layers above an optically thick disc.  相似文献   

9.
We present two new sets of complete light curves of EQ Tauri (EQ Tau) observed in 2000 October and 2004 December. These were analysed, together with the light curves obtained by Yang & Liu in 2001 December, with the 2003 version of the Wilson–Devinney code. In the three observing seasons, the light curves show a noticeable variation in the time-scale of years. The more massive component of EQ Tau is a solar-type star (G2) with a very deep convective envelope, which rotates about 80 times as fast as the Sun. Therefore, the change can be explained by dark-spot activity on the common convective envelope. The assumed unperturbed part of the light curve and the radial velocities published by Rucinski et al. were used to determine the basic parameters of the system, which were kept fixed for spot modelling in the three sets of light curves. The results reveal that the total spotted area on the more massive component covers 18, 3 and 20 per cent of the photospheric surface in the three observing seasons, respectively. Polar spots and high-latitude spots are found. The analysis of the orbital period has demonstrated that it undergoes cyclical oscillation, which is due to either a tertiary component or periodic magnetic activity in the more massive component.  相似文献   

10.
We report on observation and determination of rotational periods of ten weak‐line T Tauri stars in the Cepheus‐Cassiopeia star‐forming region. Observations were carried out with the Cassegrain‐Teleskop‐Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak‐line and post T Tauri stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The IRAS and 2MASS associations for 193 T Tauri stars are identified in this paper. From the color–color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material, as suggested previously. It is also found that the IR excesses at IRAS region for few T Tauri stars and the near-IR excesses for some T Tauri stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, It is found in deredened J–H versus H–K color–color diagram that there is a slight separation in different spectral groups. The T Tauri stars locus equation in J–H versus H–K color–color diagram for our sample is also presented.  相似文献   

12.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   

13.
We have mapped surface inhomogeneities on the classical T Tauri star DF Tau, using the Li  i doublet at 670.8 nm, the Ca  i lines at 612.2 nm and 643.9 nm and a calcium and iron blend at 646.3 nm. We find compelling evidence that there are hotspots with temperatures of more than 5000 K. Two of the hotspots produce line-profile deformations that can be traced as they move through the cross-correlated profiles. When one of the hotspots crosses the stellar disc, redshifted absorption components appear in the Na D lines. As these redshifted absorption features are usually tracers for mass-infall we interpret this hotspot as an accretion shock close to the stellar surface.   Parts of the surface of DF Tau are covered with a hot chromosphere that is visible in the Ca  ii infrared triplet lines and the narrow component of He  i . We find no correlation between the veiling and the lines that originate from the hot chromosphere, suggesting that the veiling and the chromospheric emission are produced in physically distinct regions.  相似文献   

14.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

15.
A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatório do Pico dos Dias . The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li  i 6708 Å and Hα lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung–Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.  相似文献   

16.
We present recent results from optical photometric and spectroscopic observations of the pre‐main sequence star V1184 Tau (CB 34V). The star is associated with the Bok globule CB 34 and was considered as a FUOR candidate in previous studies. Our photometric data obtained from October 2000 to April 2003 show that the stellar brightness varies with an amplitude of about 0.m 5 (I ), but from August 2003 the photometric behavior of the star has changed dramatically. Three deep brightness minima (ΔI ∼ 4m.2) were observed during the past two years. The analysis of available photometric data suggests that V1184 Tau shows two types of variability produced (1) by rotation of large cool spotted surface and (2) by occultation from circumstellar clouds of dust or from features of a circumstellar disk. The behavior of the VI index indicates that the star becomes redder towards minimum light, but from a certain turning point (V ∼ 18m.2) it gets bluer and is fading further. Five medium dispersion optical spectra of V1184 Tau were obtained in the period 2001–2004. Signi.cant changes in the profile and strength of the emission lines in the spectrum of V1184 Tau were found. During minimum light the equivalent width of the Hα emission line increases from 4 Å to 9 Å. The [O I] lines (λλ 6003, 6363 Å) are also seen in emission while the sodium doublet keeps its absorption strength and equivalent width. The possibility to reconstruct the historical light curve of V1184 Tau using photographical plate archives is brie.y discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
The number of confirmed and suspected close T Tauri binaries (period days) is increasing. We discuss some systems with enhanced emission line activity and periodic line profile changes. Non-axisymmetric flows of plasma in the region between the circumbinary disk and the stars can be generated through the influence of the secondary component. Such enhanced activity is found around binaries with eccentric as well as circular orbits. We discuss our observations of the T Tauri stars RW Aurigae A and RU Lupi, which may host very close brown dwarf companions. Model simulations indicate that non-axisymmetric flows are generated around close binaries with circumbinary disks, also in systems with circular orbits.  相似文献   

19.
We combine calibrated International Ultraviolet Explorer ( IUE ) archive data and new low-resolution optical data for the T Tauri star LkH α 264 covering the region from 1200 to 7000 Å. The UV continuum is well fitted by the combination of a blackbody at 4300 K plus hydrogenic free–free and free–bound emission from a dense plasma at 3.5×104 K plus the emission by a second blackbody. This last component is at T ≈8700 K and covers about 4 per cent of the stellar surface. We interpret this last component to be the result of emission from one or various hotspots. The interesting result is that this combined emission also fits the observed optical continuum well. We conclude that this star is an analogue of the Sun, however displaying a much higher level of activity.  相似文献   

20.
We monitored the light curves of 22 weak-line T Tauri stars (WTTSs) discovered among the X-ray sources in the field of the Taurus-Auriga cloud. For 12 of the 22 WTTSs photometric periodic variability is confirmed and their rational periods are determined using Phase Dispersion Minimization (PDM) and Fourier analysis. Most of them are found to have periods shorter than one day. This gives further evidence for the spin up of solar-type stars predicted by the models of angular momentum evolution of pre-main sequence stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号