首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

2.
Quantum electrodynamics(QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, Maxwell electrodynamics is modified to nonlinear electrodynamics. In this work, we study the force-free magnetosphere in nonlinear electrodynamics in a general framework. The pulsar equation describing a steady and axisymmetric magnetosphere is derived, which now admits solutions with corrections. We derive the first-order nonlinear corrections to the near-zone dipole magnetosphere in some popular nonlinear effective theories.The field lines of the corrected dipole tend to converge on the rotational axis so that the fields in the polar region are stronger compared to the pure dipole case.  相似文献   

3.
The force-free limit of magnetohydrodynamics (MHD) is often a reasonable approximation to model black hole and neutron star magnetospheres. We describe a general relativistic force-free (GRFFE) formulation that allows general relativistic magnetohydrodynamic (GRMHD) codes to directly evolve the GRFFE equations of motion. Established, accurate and well-tested conservative GRMHD codes can simply add a new inversion piece of code to their existing code, while continuing to use all the already-developed facilities present in their GRMHD code. We show how to enforce the   E · B = 0  constraint and energy conservation, and we introduce a simplified general model of the dissipation of the electric field to enforce the   B 2− E 2 > 0  constraint. We also introduce a simplified yet general method to resolve current sheets, without much reconnection, over many dynamical times. This formulation is incorporated into an existing GRMHD code ( harm ), which is demonstrated to give accurate and robust GRFFE results for Minkowski and black hole space–times.  相似文献   

4.
In this work, the charged black hole solution to the Brans-Dicke gravity theory in the presence of the nonlinear electrodynamics has been investigated. To simplify the field equations, a suitable conformal transformation has been used which transforms the Brans-Dicke-Born-Infeld Lagrangian to that of Einstein-dilaton theory with new nonlinear electrodynamics field. A new class of 4-dimensional black hole solution has been constructed out as the exact solution to the Brans-Dicke theory in the presence of the Born-Infeld nonlinear electrodynamics. The physical properties of the solutions have been studied. The black hole charge and temperature have been calculated making use of the Gauss’s law and the concept of surface gravity, respectively. Also, the black hole mass and entropy have been obtained from geometrical methods. Through a Smarr-type mass formula as a function of the black hole charge and entropy the black hole temperature and electric potential, as the intensive parameters conjugate to the black hole entropy and charge, have been calculated.  相似文献   

5.
In this paper we present the results of time-dependent simulations of the dipolar axisymmetric magnetospheres of neutron stars carried out within the frameworks of both relativistic magnetohydrodynamics (MHD) and resistive force-free electrodynamics. The results of force-free simulations reveal the inability of our numerical method to accommodate the equatorial current sheets of pulsar magnetospheres, and raise a question mark about the robustness of this approach. On the other hand, the MHD approach allows us to make significant progress. We start with a non-rotating magnetically dominated dipolar magnetosphere and follow its evolution as the stellar rotation is switched on. We find that the time-dependent solution gradually approaches a steady state that is very close to the stationary solution of the pulsar equation found in 1999 by Contopoulos, Kazanas & Fendt. This result suggests that other stationary solutions that have the Y-point located well inside the light cylinder are unstable. The role of particle inertia and pressure on the structure and dynamics of MHD magnetospheres is studied in detail, as well as the potential implications of dissipative processes in the equatorial current sheet. We argue that pulsars may have differentially rotating magnetospheres which develop noticeable structural oscillations, and that this may help to explain the nature of the subpulse phenomena.  相似文献   

6.
Using the Grad-Shafranov equation, we consider a new analytical model of the black hole magnetosphere based on the assumption that the magnetic field is radial near the horizon and uniform (cylindrical) in the jet region. Within this model, we have managed to show that the angular velocity of particles ΩF near the rotation axis of the black hole can be smaller than ΩH/2. This result is consistent with the latest numerical simulations.  相似文献   

7.
A method for solving the force-free surface problem for the pulsar magnetosphere is outlined. The given formulation is extended to an oblique rotator problem. Since we solve equation subject to the boundary values—i.e., the boundary element method (BEM) developed in Paper I is used—we can directly determine the force-free surface. Another merit of this method rests in the fact that we only use a two-dimensional grid, in spite of the problem being three-dimensional. A numerical calculation has been performed to confirm the solution by the particle method (Krause-Polstorff and Michel, 1985).  相似文献   

8.
We have investigated Hawking non-thermal and purely thermal Radiations of Reissner Nordström anti-de Sitter (RNAdS) black hole by massive particles tunneling method. The spacetime background has taken as dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has derived from Hamilton-Jacobi equation. We have supposed that energy and angular momentum are conserved and have shown that the non-thermal and thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results for RNAdS black hole is also in the same manner with Parikh and Wilczek’s opinion and explored the new result for Hawking radiation of RNAdS black hole.  相似文献   

9.
In this paper, we study wave properties of isothermal plasma for the Schwarzschild de-Sitter black hole in a Veselago medium. We use ADM 3+1 formalism to formulate general relativistic magnetohydrodynamical (GRMHD) equations for the Schwarzschild de-Sitter spacetime in Rindler coordinates. Further, Fourier analysis of the linearly perturbed GRMHD equations for the rotating (non-magnetized and magnetized) background is taken whose determinant leads to a dispersion relation. We investigate wave properties by using graphical representation of the wave vector, the refractive index, change in refractive index, phase and group velocities. Also, the modes of wave dispersion are explored. The results indicate the existence of the Veselago medium.  相似文献   

10.
We investigate the general relativistic magnetohydronadynamic (GRMHD) equations for hot plasmas in a Veselago medium around the Reissner-Nordström (RN) black hole. Using the 3+1 formalisms of spacetime, we write the GRMHD equations and perturb them linearly. These are then Fourier analyzed for the magnetized and nonmagnetized plasmas in rotating and nonrotating backgrounds. We derive dispersion relations and analyze the wave properties by the graphs of wave vector, refractive index and change in refractive. The results confirm the presence of Veselago medium for rotating magnetized/nonmagnetized and nonrotating nonmagnetized plasmas.  相似文献   

11.
We calculate the fields surrounding and the power radiated by a slowly rotating neutron star with a frozen-in magnetic dipole field, tilted with respect to the rotation axis, including the effects of spacetime curvature. The general relativistic effects suppress the radiated power relative to flat space by factors up to 1/7 for magnetic dipole radiation and 1/50 for the associated electric quadrupole radiation. This suppression exceeds that which might be expected from a surface red shift alone.Numerical results are found using power series which describe the behavior of electromagnetic fields exterior to a black hole or slowly rotating neutron star. These new solutions, appropriate near the stellar surface, converge for all radii exterior to the neutron star (or black hole) making analytic continuation of the power series unnecessary as well as allowing matching to a linear combination of asymptotic expansions, appropriate for large radius. Typical numerical values for these functions are presented as well as techniques for accelerating the convergence of their respective power series which make them attractive alternatives to numerical integration.Supported in part by NSF Grant PHY 77 28356.  相似文献   

12.
The X-ray activity of anomalous X-ray pulsars and soft γ-ray repeaters may result from the heating of their magnetic corona by direct currents dissipated by magnetic reconnection. We investigate the possibility that X-ray flares and bursts observed from anomalous X-ray pulsars and soft γ-ray repeaters result from magnetospheric reconnection events initiated by development of the tearing mode in magnetically dominated relativistic plasma. We formulate equations of resistive force-free electrodynamics, discuss the relation of the latter to ideal electrodynamics, and give examples of both ideal and resistive equilibria. Resistive force-free current layers are unstable towards the development of small-scale current sheets where resistive effects become important. Thin current sheets are found to be unstable due to the development of the resistive force-free tearing mode. The growth rate of the tearing mode is intermediate between the short Alfvén time-scale  τA  and a long resistive time-scale  τR: Γ∼ 1/(τRτA)1/2  , similar to the case of non-relativistic non-force-free plasma. We propose that growth of the tearing mode is related to the typical rise time of flares, ∼10 ms. Finally, we discuss how reconnection may explain other magnetar phenomena and ways to test the model.  相似文献   

13.
We study the relation between the existence of the logarithmic prefactor and spacetime dimensionality in black hole entropy relation by a detailed study of a TeV-scale black hole entropy. In a model universe with large extra dimensions and within the Generalized Uncertainty Principle (GUP) framework, we show that probability of black hole production in the Large Hadronic Collider (LHC) decreases for sufficiently large values of the GUP parameter. In this regard, even observation of micro-black holes may be suppressed at TeV energy scale. We determine also the GUP parameter in an extra dimensional scenario by comparing black hole entropy calculated within the GUP and loop quantum gravity frameworks.  相似文献   

14.
Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.  相似文献   

15.
Here we briefly report on results of self-consistent numerical modeling of a differentially rotating force-free magnetosphere of an aligned rotator. We show that differential rotation of the open field line zone is significant for adjusting of the global structure of the magnetosphere to the current density flowing through the polar cap cascades. We argue that for most pulsars stationary cascades in the polar cap can not support stationary force-free configurations of the magnetosphere.   相似文献   

16.
I. Contopoulos 《Solar physics》2013,282(2):419-426
We present a new improved version of our force-free electrodynamics (FFE) numerical code in spherical coordinates that extrapolates the magnetic field in the inner solar corona from a photospheric vector magnetogram. The code satisfies the photospheric boundary condition and the condition ??B=0 to machine accuracy. The performance of our method is evaluated with standard convergence parameters, and is found to be comparable to that of other nonlinear force-free extrapolations.  相似文献   

17.
The comoving-frame equations of radiative transfer and moment equations to accurate terms of all orders inv/c are derived in the modified Lagrangian form. The equations exactly describe the interaction of radiation with matter in a relativistically moving medium in flat or curved spacetime. Two specialized sets of equations are presented: (1) the equation of radiative transfer and moment equations accurate to terms of second order (v 2/c 2), and (2) the transfer equation and moment equations for a radial flow in curved spacetime with the Schwarzschild-type metric.  相似文献   

18.
The force-free magnetosphere around an obliquely rotating pulsar is studied. The basic equations reduce to two equations for two Euler potentials. One of the Euler potentials is regarded as a generalization of the stream function of the poloidal magnetic field lines in an axisymmetric rotator. Two divergence-free vectors become tangential to the surface on which this Euler potential is constant.  相似文献   

19.
The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek’s opinion and gives a correction to the Hawking radiation of SAdS black hole.  相似文献   

20.
Considering the fact that there is a correlation between the black hole horizon and cosmological horizon, we discuss the thermodynamic properties of de Sitter spacetime. The equivalent temperature and energy of de Sitter spacetime are obtained. It is shown that the upper limit energy of de Sitter spacetime is equal to the energy of a pure de Sitter spacetime. The thermodynamic entropy of de Sitter spacetime is the sum of the black hole horizon thermodynamic entropy and the one of cosmological horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号