首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the context of constraining an expansion of the dark energy equation of state   w ( z ),  we show that the eigendecomposition of Fisher matrices is sensitive to both the maximum order of the expansion and the basis set choice. We investigate the Fisher matrix formalism in the case that a particular function is expanded in some basis set. As an example we show results for an all-sky weak lensing tomographic experiment. We show that the set of eigenfunctions is not unique and that the best constrained functions are only reproduced accurately at very higher order   N ≳ 100  , a top-hat basis set requires an even higher order. We show that the common approach used for finding the marginalized eigenfunction errors is sensitive to the choice of  non- w ( z )  parameters and priors. The eigendecomposition of Fisher matrices is a potentially useful tool that can be used to determine the predicted accuracy with which an experiment could constrain   w ( z )  . It also allows for the reconstruction of the redshift sensitivity of the experiment to changes in   w ( z )  . However, the technique is sensitive to both the order and the basis set choice. Publicly available code is available as part of icosmo at http://www.icosmo.org .  相似文献   

2.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

3.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

4.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics.
We use a set of realistic image simulations produced by the Shear Testing Programme (STEP) collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity.
We find the biased aperture mass dispersion is reduced by  ∼20 per cent  at redshift ∼1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases σ8 and w 0 estimates by a few per cent. The power of tomography is significantly reduced when marginalizing over a range of realistic shape measurement biases. For a Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)-Wide-like survey,  [Ωm, σ8]  confidence regions are degraded by a factor of 2, whereas for a Kilo-Degree Survey (KIDS)-like survey the factor is 3.5. Our results are strictly valid only for KSB methods, but they demonstrate the need to marginalize over a redshift-dependent shape measurement bias in all future cosmological analyses.  相似文献   

5.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

6.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

7.
We present a study of numerical effects in dissipationless cosmological simulations. The numerical effects are evaluated and studied by comparing the results of a series of 643-particle simulations of varying force resolution and number of time-steps, performed using three of the N -body techniques currently used for cosmological simulations: the Particle–Mesh (PM), the Adaptive Particle–Particle–Particle–Mesh (AP3M) and the newer Adaptive Refinement Tree (ART) codes. This study can therefore be interesting both as an analysis of numerical effects and as a systematic comparison of different codes.
We find that the AP3M and the ART codes produce similar results given that convergence is reached within the code type. We also find that numerical effects may affect the high-resolution simulations in ways that have not been discussed before. In particular, our study revealed the presence of two-body scattering, the effects of which can be greatly amplified by inaccuracies in time integration. This process appears to affect the correlation function of matter, the mass function, the inner density of dark matter haloes and other statistics at scales much larger than the force resolution, although different statistics may be affected in a different fashion. We discuss the conditions for which strong two-body scattering is possible and discuss the choice of the force resolution and integration time-step. Furthermore, we discuss recent claims that simulations with force softening smaller than the mean interparticle separation are not trustworthy and argue that this claim is incorrect in general, and applies only to the phase-sensitive statistics. Our conclusion is that, depending on the choice of mass and force resolution and the integration time-step, a force resolution as small as 0.01 of the mean interparticle separation can be justified.  相似文献   

8.
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions  ξ±  and the aperture mass dispersion  〈 M 2ap〉  which can directly be constructed from weak lensing shear maps. We compare the efficiency with which these estimators can be used to constrain cosmological parameters. To this end we introduce the Karhunen–Loève (KL) eigenmode analysis techniques for weak lensing surveys. These tools are shown to be very effective as a diagnostics for optimizing survey strategies. The usefulness of these tools to study the effect of angular binning, the depth and width of the survey and noise contributions due to intrinsic ellipticities and number density of source galaxies on the estimation of cosmological parameters is demonstrated. Results from independent analysis of various parameters and joint estimations are compared. We also study how degeneracies among various cosmological and survey parameters affect the eigenmodes associated with these parameters.  相似文献   

9.
In maximum-likelihood analyses of the Local Group (LG) acceleration, the object describing non-linear effects is the coherence function (CF), i.e. the cross-correlation coefficient of the Fourier modes of the velocity and gravity fields. We study the CF both analytically, using perturbation theory, and numerically, using a hydrodynamic code. The dependence of the function on Ωm and the shape of the power spectrum is very weak. The only cosmological parameter that the CF is strongly sensitive to is the normalization σ 8 of the underlying density field. A perturbative approximation for the function turns out to be accurate as long as σ 8 is smaller than about 0.3. For higher normalizations we provide an analytical fit for the CF as a function of σ 8 and the wavevector. The characteristic decoherence scale which our formula predicts is an order of magnitude smaller than that determined by Strauss et al. This implies that present likelihood constraints on cosmological parameters from analyses of the LG acceleration are significantly tighter than hitherto reported.  相似文献   

10.
We study the possibility of correctly identifying, from the smooth galaxy density field of the PSC z flux-limited catalogue, high-density regions (superclusters) and recovering their true shapes in the presence of a bias introduced by the coupling between the selection function and the constant radius smoothing. We quantify such systematic biases in the smoothed PSC z density field and after applying the necessary corrections we study supercluster multiplicity and morphologies using a differential geometry definition of shape. Our results strongly suggest that filamentary morphology is the dominant feature of PSC z superclusters. Finally, we compare our results with those expected in three different cosmological models and find that the Λ cold dark matter (CDM) model (ΩΛ=1−Ωm=0.7) performs better than Ωm=1 CDM models.  相似文献   

11.
Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift   z = 0  but were once contained in more massive 'host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from  ∼1011  to  ∼1012  h −1 M  . Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias.  相似文献   

12.
The plethora of recent cosmologically relevant data has indicated that our Universe is very well fitted by a standard Friedmann–Lemaître–Robertson–Walker (FLRW) model, with     and  ΩΛ≈ 0.73  – or, more generally, by nearly flat FLRW models with parameters close to these values. Additional independent cosmological information, particularly the maximum of the angular-diameter (observer area) distance and the redshift at which it occurs, would improve and confirm these results, once sufficient precise Type Ia supernovae data in the range  1.5 < z < 1.8  become available. We obtain characteristic FLRW-closed functional forms for   C = C ( z )  and     , the angular-diameter distance and the density per source counted, respectively, when  Λ≠ 0  , analogous to those we have for  Λ= 0  . More importantly, we verify that for flat FLRW models z max– as is already known but rarely recognized – the redshift of C max, the maximum of the angular-diameter distance, uniquely gives  ΩΛ  , the amount of vacuum energy in the universe, independent of H 0, the Hubble parameter. For non-flat models, determination of both z max and C max gives both  ΩΛ  and ΩM, the amount of matter in the universe, as long as we know H 0 independently. Finally, determination of C max automatically gives a very simple observational criterion for whether or not the universe is flat – presuming that it is FLRW.  相似文献   

13.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

14.
We report the results of a cosmic shear survey using the 4.2-m William Herschel Telescope on La Palma, to a depth of   R = 25.8 ( z ≈ 0.8)  , over 4 deg2. The shear correlation functions are measured on scales from 1 to 15 arcmin, and are used to constrain cosmological parameters. We ensure that our measurements are free from instrumental systematic effects by performing a series of tests, including a decomposition of the signal into E - and B -modes. We also reanalyse the data independently, using the shear measurement pipeline developed for the COMBO-17 survey. This confirms our results and also highlights various effects introduced by different implementations of the basic 'Kaiser–Squires–Broadhurst' shear measurement method. We find that the normalization of the matter power spectrum on 8  h −1 Mpc scales is  σ8= (1.02 ± 0.15)(0.3/Ω m )1/2  , where the 68 per cent confidence limit error includes noise, sample variance, covariance between angular scales, systematic effects, redshift uncertainty and marginalization over other parameters. We compare these results with other cosmic shear surveys and with recent constraints from the Wilkinson Microwave Anisotropy Probe experiment.  相似文献   

15.
We investigate the impact of the observed correlation between a galaxy's shape and its surrounding density field on the measurement of third-order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third-order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift   z m∼ 0.7  by ∼15 per cent. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with   z m∼ 0.4  we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third-order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.  相似文献   

16.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

17.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

18.
19.
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ 2 function a set of 'hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing     (where     is per data set j ) we propose to minimize     (where N j is the number of data points per data set j ). We illustrate the method by estimating the Hubble constant H 0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang ). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.  相似文献   

20.
We explore the prospects for using future supernova observations to probe the dark energy. We focus on quintessence, an evolving scalar field that has been suggested as a candidate for the dark energy. After simulating the observations that would be expected from the proposed SuperNova / Acceleration Probe satellite ( SNAP ), we investigate two methods for extracting information concerning quintessence from such data. First, by expanding the quintessence equation of state as   w Q ( z ) = w Q (0) −α ln(1 + z )  , to fit the data, it is possible to reconstruct the quintessence potential for a wide range of smoothly varying potentials. Secondly, it will be possible to test the basic properties of the dark energy by constraining the parameters  Ω Q , w Q   and α. We show that it may be possible, for example, to distinguish between quintessence and the cosmological constant in this way. Furthermore, when supernova data are combined with other planned cosmological observations, the precision of reconstructions and parameter constraints is significantly improved, allowing a wider range of dark energy models to be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号