首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Electron microprobe analyses of olivine, orthopyroxene, clinopyroxene, plagioclase feldspar, chromite, whitlockite, apatite, troilite and metals indicate that the Vilna meteorite is a hypersthene chondrite belonging to the L5 or L6 subgroups.  相似文献   

2.
The Timmersoi meteorite, a new type L5 hypersthene chondrite from the Niger Republic is described and microprobe analyses of its olivine, orthopyroxene, clinopyroxene, plagioclase, kamacite, taenite, troilite, chromite, whitlockite, chlorapatite and limonite presented. Veins and patches of black “glassy” material are regarded as products of shock melting. In places this material contains immiscible droplets of troilite each with one or more well-formed crystals of taenite. Calculations indicate equilibrium between olivine and orthopyroxene with a temperature of equilibration of about 850 °C.  相似文献   

3.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

4.
Abstract— Based on optical microscopy and electron microprobe analysis, Linum is classified as an L6b chondrite that contains olivine (Fa24), orthopyroxene (Fs20), clinopyroxene (Wo45En47Fs8), plagioclase (An10Ab84Or6), nickel-iron, troilite, chromite and accessory amounts of chlorapatite and whitlockite.  相似文献   

5.
The Kamiomi, Sashima-gun (Iwai-shi), Ibaraki-ken, Japan, chondrite (observed to fall in spring, during the period 1913–6), consists of olivine, orthopyroxene, nickel-iron and troilite with minor amount of plagioclase, clinopyroxene, apatite and chromite. The average molar composition of olivine (Fa19) and orthopyroxene (Fs17) indicates that Kamiomi is a typical olivine bronzite chondrite. From the well-recrystallized texture, the presence of poorly-definable chondrules, homogeneous composition of olivine and absence of glass, this chondrite could be classified in petrologic type 5. The bulk chemical composition, especially, total Fe (27.33%) and metallic Fe (17.00%) as well as Fetotal/SiO2(0.72), Femetal/Fetotal (0–633) and SiO2/MgO (1.59) support the above conclusion. Coexistence of heavily-shocked olivine grains in the matrix composed of olivines and pyroxenes which suffered from light to moderate shock effect suggest that impacting phenomena, small-scaled but locally strong, occurred on the Kamiomi parent body.  相似文献   

6.
The Ijopega (Papua New Guinea) meteorite is a new H6 group chondrite fall which contains olivine (Fa 19.9 mole %), bronzite (Fs 17.8 mole %), plagioclase (An 12.1 Or 6.3 Ab 81.6 mole %), diopside, kamacite, taenite, troilite, chromite and whitlockite. The meteorite is extensively recrystallized and brecciated, and shows evidence of moderate shock deformation. Examination of Fe2+ and Mg partitioning between ortho- and clinopyroxene indicates a high equilibration temperature (940° or 880 °C). Chemical analysis shows the meteorite to be rich in S, containing about twice the average H-group abundance. Trace elements, including REE, are in accord with established H-group chondrite abundances.  相似文献   

7.
Abstract Melnikovo is a relatively unweathered 545.6-g LL6 chondrite that was found in 1983. Only a few poorly defined chondrules are discernable in the examined sections; two of these are enriched in chromite. The meteorite contains olivine (Fa27,8), low-Ca pyroxene (Fs24,4), plagioclase, rare clinopyroxene, chlorapatite, merrillite and opaque minerals, which have a modal abundance (in wt%) of troilite (3.9%), kamacite (0.4%), taenite plus tetrataenite (0.7%), chromite (0.8%), and trace amounts of ilmenite and Mn-ilmenite. The meteorite appears unbrecciated on a centimeter scale.  相似文献   

8.
Abstract— The Carcote meteorite, detected in 1888 in the northern Chilean Andes, is a brecciated, weakly shocked H5 chondrite. It contains a few barred olivine chondrules and, even more rarely, fan-shaped or granular orthopyroxene chondrules. The chondrules are situated in a fine-grained matrix that consists predominantly of olivine and orthopyroxene with accessory clinopyroxene, troilite, chromite, merrillite, and plagioclase. The metal phase is mainly kamacite with subordinate taenite and traces of native Cu. In its bulk rock composition, Carcote compares well with other H5 chondrites so far analysed, except for a distinctly higher C content. Microprobe analyses revealed the following mineral compositions: olivine (Fa16.5–20), orthopyroxene (Fs14–17.5), diopsidic clinopyroxene (FS6–7), plagioclase (An15–20). Troilite is stoichimetric FeS with traces of Ni and Cr; chromite has Cr/(Cr + Al) of 0.86, Fe2+/(Fe2+ + Mg) of 0.80-0.88 and contains considerable amounts of Ti, Mn, and Zn. Merrillite is close to the theoretical formula Ca18(Mg, Fe)2Na2(PO4)14, although with a Na deficiency not compensated for by excess Ca; the Mg/(Mg + Fe2+) ratio of the Carcote merrilite is 0.93-0.95. Kamacite and taenite have Ni contents of 5.6–7.2 and 17.1–23.4 wt%, respectively. Native Cu contains about 3.1–3.3 wt% Fe and 1.6 wt% Ni. Application of different geothermometers to the Carcote H5 chondrite yielded apparently inconsistent results. The highest temperature range of 850–950 °C (at 1 bar) is derived from the Ca-in-opx thermometer. From the cpx-opx solvus geothermometers and the two-pyroxene Fe-Mg exchange geothermometer, a lower temperature range of 750–840 °C is estimated, whereas lower and more variable temperatures of 630–770 °C are obtained from the Ca-in-olivine geothermometer. Recent calibrations of the olivine-spinel geothermometer yielded a still lower temperature range of 570–670 °C, which fits well to the temperature information derived from the Ni distribution between kamacite and taenite. Judging from crystal chemical considerations, we assume that these different temperatures reflect the closure of different exchange equilibria during cooling of the meteorite parent body.  相似文献   

9.
The Kyle, Texas, U.S.A., chondrite was identified in 1965. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 26.2 mole %), orthopyroxene (Fs 21.0 mole %), clinopyroxene, plagioclase (An 10.3 mole %), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. Eutectic intergrowths of metaltroilite and a brecciated matrix indicate that the Kyle chondrite was shocked. Recrystallization and shock have obliterated chondrule-matrix boundaries. A chemical analysis of the meteorite shows the following results (in weight %): Fe 0.38, Ni 1.22, Co 0.05, FeS 5.98, SiO2 38.41, TiO2 0.11, Al2O3 2.13, Cr2O3 0.55, Fe2O3 8.02, FeO 14.83, MnO 0.31, MgO 23.10, CaO 1.60, Na2O 0.74, K2O 0.08, P2O5 0.19, H2O+ 1.73, H2O? 0.37, C 0.03, Sum 99.83. On the basis of bulk chemistry, composition of olivine and orthopyroxene, and the recrystallized matrix, the Kyle meteorite is classified as an L6 chondrite.  相似文献   

10.
Abstract— The Loxton meteorite is a single stone of 22 g found in South Australia in 1968. It has been classified as an L5 chondrite, shock facies ‘a,’ and contains olivine (Fa24), orthopyroxene (Fs21–22), clinopyroxene (Wo44.7En45.9Fs9.4), nickel-iron, troilite, chromite and chlorapatite.  相似文献   

11.
Abstract— A detailed analysis of the reflectance spectrum of asteroid 3628 Bo?němcová, previously identified as a possible ordinary chondrite parent body, indicates that its surface consists of an assemblage dominated by clinopyroxene and plagioclase feldspar. The clinopyroxene is Fe2+‐bearing (likely in the range Fs?10–20), with >90% of the Fe2+ being present in the M1 crystallographic site (spectral type A). The clinopyroxene:plagioclase feldspar ratio is between ?2 and 3 (?55–75% clinopyroxene, ?20–33% plagioclase feldspar). If olivine is present, the clinopyroxene:olivine ratio is >?3 (<20% olivine). The derived mineralogy of Bo?němcová is most similar, but not identical, to the known angrite meteorites. The data suggest that Bo?němcová formed by melting and differentiation of an oxidized chondritic precursor and probably represents an unsampled angrite‐like body.  相似文献   

12.
The Alta'ameem hypersthene chondrite is a light gray brecciated and metamorphosed meteorite composed mainly of olivine (27% Fa), orthopyroxene (24.5% Fs) and plagioclase (An10). Other minerals include troilite, kamacite, taenite, chromite, ilmenite, clinopyroxene, chalcopyrite, and apatite or merrillite. The mineralogical and chemical analyses suggest that the Alta'ameem meteorite belongs to the amphoterite group of chondrites. The chemical composition includes the following: Fe 3.39, Ni 1.13, Co 0.05, Cu 0.01, FeS 6.48, SiO2 39.48, TiO2 0.28, Al2O3 2.25, FeO 16.46, MnO 0.40, MgO 25.66, CaO 1.47, Na2O 1.05, K2O 0.15, P2O5 0.47, Cr2O3 0.45; total 99.18.  相似文献   

13.
The distribution of minerals on the lunar surface is information which could contribute to studying lunar origin and evolution. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, ilmenite, and plagioclase on the lunar surface has been mapped based on Hapke radiative transfer model and linear unmixing of spectra with Clementine UVVIS/NIR data. The results have been validated on the basis of minerals modal abundance data of the Apollo samples, and problems in the minerals abundance mapping have been analyzed. The validation based on analysis data of Apollo samples indicates that plagioclase mapped in this paper represents the total abundance of plagioclase and agglutinitic glass. The minerals mapping results show that the lunar surface is mainly composed of pyroxene, plagioclase, agglutinitic glass, and ilmenite. Basalt in the lunar mare is mainly composed of clinopyroxene and ilmenite, and lunar highland is mainly composed of plagioclase and agglutinitic glass. Orthopyroxene is mainly distributed on the north of Mare Imbrium, on the south of Maria and Aitken Basin. According to our results, there is probably no large area of olivine distribution on the lunar surface which is different from earlier published results. Therefore, emphasis should be put on the olivine distribution in the minerals mapping using hyperspectral data such as M3 of Chandrayaan-1 and IIM of ChangE-1.  相似文献   

14.
Abstract— We have analyzed the modal abundances of 23 of the known 24 diogenites in 31 thin sections using an energy dispersive spectrometer (EDS) and automated phase distribution analysis software. Orthopyroxene is predictably the most abundant phase, ranging from 27.7 vol% to 99.8 vol% in these samples. The grand average mode of all the analyzed diogenites includes the “olivine diogenites” but not ALH 85015, a probable howardite, and ALHA81208, a sample with an abundant silica phase. The grand average of these 21 diogenites is: orthopyroxene 92.2 vol%, olivine 4.2 vol%, clinopyroxene 1.2 vol%, chromite 0.9 vol%, plagioclase 0.4 vol%, FeNi metal 0.1 vol%, troilite 0.6 vol%, and silica phase 0.4 vol%. Plagioclase feldspar is extremely depleted in all samples, with modal abundance from none detected to 4.6 vol% in range. Such a low volume of plagioclase may indicate that the diogenite parental melts originated in a source region depleted in Al (Warren, 1985; Stolper, 1975), which is consistent with crystallization from a melt derived from material that had previously experienced extraction of a eucrite-type melt.  相似文献   

15.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

16.
The meteorite which fell near Messina, Italy, on 16 July 1955 is a typical olivine-hypersthene (L-group) chondrite. Its mineralogical composition is: olivine (Fa24), orthopyroxene (Fs20) with some polysynthetically twinned clynopyroxene, plagioclase (An10) and merrillite. Opaque phases present are: copper, kamacite, taenite, plessite, chalcopyrrhotite, mackinawite, troilite and chromite. The stone contains abundant chondrules. The matrix consists chiefly of broken chondrules with tiny fragments of crystals and rare amorphous material. Chondrules form more than 42% of the meteorite by volume. Some unusual features of the fabric of this meteorite include silicate grains showing deformation; silicates with fusion spots of dark glass containing blebs of metallic iron; iron and troilite with marginal fusion yielding globules and droplets sometimes showing flow structures. The classification of this chondrite is confirmed by bulk chemical analysis.  相似文献   

17.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

18.
Two new ordinary chondrites were found about 40 km west of Albuquerque, New Mexico. Correo is an H4 chondrite with distinct chondrules and major olivine (Fo81.4), orthopyroxene (En82.3) and plagioclase (An12). Suwanee Spring is an L5 chondrite with few distinct chondrules and a highly recrystallized matrix. Major minerals are olivine (Fo75.4), orthopyroxene (En77.7) and plagioclase (An9). The metallic Ni-Fe phases of both meteorites are typical of slowly-cooled ordinary chondrites.  相似文献   

19.
Near-infrared (∼0.7 to ∼2.5 μm) spectra of S-asteroids 138 Tolosa, 306 Unitas, 346 Hermentaria, and 480 Hansa suggest the presence of variable amounts of orthopyroxene ± clinopyroxene ± olivine ± plagioclase feldspar on the surfaces of these asteroids. The spectra of these asteroids were compared to laboratory mineral mixtures of orthopyroxene, clinopyroxene, and olivine [Singer, R.B., 1981. J. Geophys. Res. 86 (B9), 7967-7982; Cloutis, E.A., 1985. Master's thesis]. The band parameters (band centers, band areas) were quantified and temperature-corrected [Moroz et al., 2000. Icarus 147, 79-93; Gaffey et al., 2002. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. The University of Arizona Press, Tucson, pp. 183-204]. Each S-asteroid in this paper exhibits an overall spectral shape with band parameters that are inconsistent with ordinary chondrite near-infrared spectra and their inferred mineral abundances and/or pyroxene chemistries. 138 Tolosa displays a complex spectrum with a broad ∼1 μm absorption feature that displays a double Band I minimum, a well-defined absorption at ∼1.3 μm, and a broad, but weak absorption in the ∼2 μm region. Although different interpretations exist, the Tolosa spectrum is most consistent with a ∼60/40 mixture of Type B clinopyroxene and orthopyroxene. Spectra of 306 Unitas suggest a surface with variable amounts of low-Ca pyroxene and olivine. Unitas is located in the S-(IV) and S-(VI) subtype regions in Gaffey et al. [1993. Icarus 106, 573-602]. 346 Hermentaria exhibits a complex, broad Band I absorption feature and a weak Band II feature, which suggests a ∼50/50 mixture of clinopyroxene and orthopyroxene. Hermentaria is classified as an S-(III). Spectra of 480 Hansa suggest a dominant low-Ca pyroxene component with lesser amounts of olivine. Based on these characterizations, these four S-asteroids should not be considered as potential ordinary chondrite parent bodies. Furthermore, these results suggest that these S-asteroids experienced at least partial melting temperatures [T?∼950 °C: Gaffey et al., 1993. Icarus 106, 573-602; Keil, K., 2000. Planet. Space Sci. 48, 887-903] during the formation epoch in the early Solar System. Continuing spectroscopic investigations will discern the relative abundance of chondritic and thermally-evolved objects among the S-type asteroids that have survived since the formation epoch ∼4.56 billion years ago.  相似文献   

20.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号