首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present the results of the application of the G-mode method to the spectral classification of the icy satellites of the giant planets. G-mode is a multivariate statistical technique for the classification of samples depending on many variables. Here this method is tested on the infrared spectra acquired by the Cassini/VIMS instrument onboard the Cassini spacecraft. This work demonstrates the suitability of automatic spectral classification methods for the study of fair resolution spectra, such as those from VIMS. Our data set is composed by two different kinds of data: observations of point targets (Galilean satellites data) and observations with medium spatial resolution (Phoebe data). In both situations, the G-mode classification performed well. In the first case, of a large number of subpixel observations of the Galilean satellites, through the G-mode it was possible to find statistically meaningful spectral groups of observations. In the case of Phoebe, of some spatially resolved observations, the G-mode classification of␣the infrared spectra of the surface led to several types, dominated by the different illumination geometry of the pixels, because, due to the irregular shape of the satellite, a proper illumination correction was not trivial to apply. Nevertheless, the decrease of the confidence level of the test as well as the re-application of the G-mode on the main type found, led to further types, whose statistical distance can be related to different chemical abundances. We plan to use the G-mode also on the data coming from ongoing and future observations of the icy Saturnian satellites.In the helioseismology literature, G-modes are gravity wave modes of the frequencies of oscillations of the Sun. Here we are dealing with a clustering method, which is essentially different.*E-mail: federico.tosi@rm.iasf.cnr.it  相似文献   

2.
The surface composition of Titan is of great importance for understanding both the internal evolution of Titan and its atmosphere. The Visual and Infrared Mapping Spectrometer (VIMS) investigation on Cassini is observing Titan from 0.35 to 5.11 μm with spatial resolution down to a few kilometers during each flyby of the spacecraft as it orbits Saturn. Our search for spectral diversity using seven methane transmission windows in the near infrared suggests that spectrally distinct units exist on the surface of Titan and that most of the surface can be modeled using only a few distinct spectral units: water frost, CO2 frost, atmospheric scattering, and an unknown material bright at 2 μm. A dark, spectrally neutral material is also implied. Use of an atmospheric scattering component with spectral mixing analysis may provide a method for partially removing atmospheric effects. In some locations, atmospheric scattering accounts for the majority of the signal. There are also small regions with unusual spectra that may be due to low signal and high noise and/or may be exotic materials of interest. Further, we searched within the methane windows for spectral features associated with Titan's surface. Only the 5-μm and, to a lesser extent, the 2-μm window provide a reasonable opportunity for this, as the shorter-wavelength windows are too narrow and the 2.8-μm window is cluttered with an unknown atmospheric constituent. We find evidence for only one spectral feature: near 4.92 μm for the 5-μm bright Tui Regio region. CO2 frost with grains smaller than about 10 μm is the best candidate we have found so far to explain this absorption as well as the feature's spectral contrast between the 2.7- and the 2.8-μm atmosphere subwindows. This suggested CO2 identification is supported by the presence of an endmember in the spectral mixture analysis that is consistent with CO2 frost with large grain sizes. We find no other absorption features that are statistically significant, including those reported earlier by others. These results are consistent with but greatly extend our early analysis that treated only the Ta data set [McCord, T.B., et al., 2006a. Planet. Space Sci. 54, 1524-1539]. In the spectral feature search process, we explored in detail the noise characteristics of the VIMS data within the 5-μm window, which has generally very low signal (4-20 DN), due to the measurement conditions and low illumination levels. We find noise of nearly Gaussian statistics except for some erratic darks and noise spikes, and the data set seems generally well behaved. We present examples of our attempt to improve on the standard VIMS pipeline data calibration.  相似文献   

3.
Conor Laver  Imke de Pater 《Icarus》2009,201(1):172-181
We present ground based observations of Io taken with a high spatial resolution imaging spectrometer on 1 and 2 June 2006. We mapped the 1.98 and 2.12 μm absorptions of SO2 frost, across Io's surface. We analyze these data with surface reflectance modeling using the Hapke method to determine the general frost distribution. This analysis also determined a lower limit of 700 μm on the grain size for the areas of strongest absorption. We incorporate our findings of a predominantly equatorial distribution of SO2 frost, with the maps of Carlson et al. [Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., Davies, A.G., Kamp, L.W., Mosher, J.A., Soderblom, L.A., Leader, F.E., Mehlman, R., Clark, R.N., Fanale, F.P., 1997. Geophys. Res. Lett. 24, 2479-2482], McEwen [McEwen, A.S., 1988. Icarus 73, 385-426] and Douté et al. [Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and The Galileo NIMS Team, 2001. Icarus 149, 107-132] to produce a self consistent explanation of the global distribution of SO2. We propose that the differences between the above maps is attributable, in part, to the different bands that were studied by the investigators.  相似文献   

4.
Three weeks prior to the commencement of Cassini's 4 year tour of the saturnian system, the spacecraft executed a close flyby of the outer satellite Phoebe. The infrared channel of the Visual Infrared Mapping Spectrometer (VIMS) obtained images of reflected light over the 0.83-5.1 μm spectral range with an average spectral resolution of 16.5 nm, spatial resolution up to 2 km, and over a range of solar phase angles not observed before. These images have been analyzed to derive fundamental photometric parameters including the phase curve and phase integral, spectral geometric albedo, bolometric Bond albedo, and the single scattering albedo. Physical properties of the surface, including macroscopic roughness and the single particle phase function, have also been characterized. Maps of normal reflectance show the existence of two major albedo regimes in the infrared, with gradations between the two regimes and much terrain with substantially higher albedos. The phase integral of Phoebe is 0.29±0.03, with no significant wavelength dependence. The bolometric Bond albedo is 0.023±007. We find that the surface of Phoebe is rough, with a mean slope angle of 33°. The satellite's surface has a substantial forward scattering component, suggesting that its surface is dusty, perhaps from a history of outgassing. The spectrum of Phoebe is best matched by a composition including water ice, amorphous carbon, iron-bearing minerals, carbon dioxide, and Triton tholin. The characteristics of Phoebe suggest that it originated outside the saturnian system, perhaps in the Kuiper Belt, and was captured on its journey inward, as suggested by Johnson and Lunine (2005).  相似文献   

5.
The nominal tour of the Cassini mission enabled the first spectra and solar phase curves of the small inner satellites of Saturn. We present spectra from the Visual Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) that span the 0.25-5.1 μm spectral range. The composition of Atlas, Pandora, Janus, Epimetheus, Calypso, and Telesto is primarily water ice, with a small amount (∼5%) of contaminant, which most likely consists of hydrocarbons. The optical properties of the “shepherd” satellites and the coorbitals are tied to the A-ring, while those of the Tethys Lagrangians are tied to the E-ring of Saturn. The color of the satellites becomes progressively bluer with distance from Saturn, presumably from the increased influence of the E-ring; Telesto is as blue as Enceladus. Janus and Epimetheus have very similar spectra, although the latter appears to have a thicker coating of ring material. For at least four of the satellites, we find evidence for the spectral line at 0.68 μm that Vilas et al. [Vilas, F., Larsen, S.M., Stockstill, K.R., Gaffley, M.J., 1996. Icarus 124, 262-267] attributed to hydrated iron minerals on Iapetus and Hyperion. However, it is difficult to produce a spectral mixing model that includes this component. We find no evidence for CO2 on any of the small satellites. There was a sufficient excursion in solar phase angle to create solar phase curves for Janus and Telesto. They bear a close similarity to the solar phase curves of the medium-sized inner icy satellites. Preliminary spectral modeling suggests that the contaminant on these bodies is not the same as the exogenously placed low-albedo material on Iapetus, but is rather a native material. The lack of CO2 on the small inner satellites also suggests that their low-albedo material is distinct from that on Iapetus, Phoebe, and Hyperion.  相似文献   

6.
The reflectance of Saturn’s moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini’s Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus’ reflectance spectrum is very bright, consistent with a surface composed primarily of H2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus’ FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH3 and a small amount of a tholin in addition to H2O ice on the surface. The presence of these three species (H2O, NH3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.  相似文献   

7.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

8.
A. Bar-Nun  G. Notesco 《Icarus》2007,190(2):655-659
Recent attempts using high resolution spectra to detect N+2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N+2 in comparison with the positively detected CO+ for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between . Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10−2 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10−2, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N2+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10−2 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N2/CO ratio in the cometary ice should be 6.6×10−3, much higher than its non-detection limit.  相似文献   

9.
A hexagonal structure has been observed at ∼76°N on Saturn since the 1980s (Godfrey, D.A. [1988]. Icarus 76, 335-356). Recent images by Cassini (Baines, K., Momary, T., Roos-Serote, M., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2007]. Geophys. Res. Abstr. 9, 02109; Baines, K., Momary, T., Fletcher, L., Kim, J., Showman, A., Atreya, S., Brown, R., Buratti, B., Clark, R., Nicholson, P. [2009]. Geophys. Res. Abstr. 11, 3375) have shown that the feature is still visible and largely unchanged. Its long lifespan and geometry has puzzled the planetary physics community for many years and its origin remains unclear. The measured rotation rate of the hexagon may be very close to that of the interior of the planet (Godfrey, D.A. [1990]. Science 247, 1206-1208; Caldwell, J., Hua, X., Turgeon, B., Westphal, J.A., Barnet, C.D. [1993]. Science 206, 326-329; Sánchez-Lavega, A., Lecacheux, J., Colas, F., Laques, P. [1993]. Science 260, 329-332), leading to earlier interpretations of the pattern as a stationary planetary wave, continuously forced by a nearby vortex (Allison, M., Godfrey, D.A., Beebe, R.F. [1990]. Science 247, 1061-1063). Here we present an alternative explanation, based on an analysis of both spacecraft observations of Saturn and observations from laboratory experiments where the instability of quasi-geostrophic barotropic (vertically uniform) jets and shear layers is studied. We also present results from a barotropic linear instability analysis of the saturnian zonal wind profile, which are consistent with the presence of the hexagon in the North Pole and absence of its counter-part in the South Pole. We propose that Saturn’s long-lived polygonal structures correspond to wavemodes caused by the nonlinear equilibration of barotropically unstable zonal jets.  相似文献   

10.
C.A. Hibbitts  J. Szanyi 《Icarus》2007,191(1):371-380
CO2 is known to adsorb onto clay and other minerals when a significant atmospheric pressure is present. We have found that CO2 can also adsorb onto some clays when the CO2 partial pressure is effectively zero under ultra-high vacuum (UHV) if cooled to the surface temperatures of the icy satellites of Jupiter and Saturn. The strength of adsorption and the spectral characteristics of the adsorbed CO2 infrared (IR) ν3 absorption band near 4.25 μm depend on the composition and temperature of the adsorbent. CO2 remains adsorbed onto the clay mineral montmorillonite for >10 s of min when exposed to a vacuum of ∼1×10−8 Torr at ∼125 K. CO2 does not adsorb onto serpentine, goethite, or palagonite under these conditions. A small amount may adsorb onto kaolinite. When heated above 150 K under vacuum, the CO2 desorbs from the montmorillonite within a few minutes. The ν3 absorption band of CO2 adsorbed onto montmorillonite at 125 K is similar to that of the CO2 detected on the saturnian and Galilean satellites and is markedly different from CO2 adsorbed onto montmorillonite at room temperature. We infer the adsorption process is physisorption and postulate that this mechanism may explain the presence and spectral characteristics of the CO2 detected in the surfaces of these outer satellites.  相似文献   

11.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

12.
We present a detailed study of an Iapetus mosaic of VIMS data with high spatial resolution (0.5 × 0.5° or ∼6.4 km/pixel). The spectra were taken in August 2007 and provide the highest VIMS spatial resolution data for this object during Cassini’s primary mission. We analyze this set of data using a statistical clustering approach to reduce the analysis of a large number of data (∼104 spectra from 0.35 to 5.10 μm) to the study of seven representative groups accounting for 99.6% of the surface covered by the original sample. We analyze the spectral absorption bands in the spectra of the different clusters indicative of different composition over the observed surface. We find coherence between the distribution of the clusters and the geographical features on the surface. We give special attention to the study of the water ice and CO2 bands. We find that CO2 is widespread over the entire surface being studied, including the bright and dark areas on Iapetus’ surface, and is probably trapped at the molecular level with other materials. The strength of the CO2 band in the areas where both, H2O- and carbon-bearing materials exist, gives support to the hypothesis that this volatile is formed on the surface of Iapetus as a product of irradiation of these two components. Finally, we also compare the Iapetus CO2 with that on other satellites confirming, that there are evident differences on the center, depth and width of the band on Iapetus and Phoebe, where CO2 has been suggested to be endogenous.  相似文献   

13.
We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H2O:CO2:CH4:N2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus “tiger stripes.” This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.  相似文献   

14.
Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Dione provided key information for solving the riddle of the origin of the dark material in the Saturn system. The Dione VIMS data show a pattern of bombardment of fine, sub-0.5-μm diameter particles impacting the satellite from the trailing side direction. Multiple lines of evidence point to an external origin for the dark material on Dione, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the trailing side, exposing clean ice, and slopes facing the trailing direction which show higher abundances of dark material. Multiple spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Epimetheus and the F-ring, implying the material has a common composition throughout the Saturn system. However, the exact composition of the dark material remains a mystery, except that bound water and, tentatively, ammonia are detected, and there is evidence both for and against cyanide compounds. Exact identification of composition requires additional laboratory work. A blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites which contain dark material, and the cause is Rayleigh scattering, again pointing to a common origin. The Rayleigh scattering effect is confirmed with laboratory experiments using ice and 0.2-μm diameter carbon grains when the carbon abundance is less than about 2% by weight. Rayleigh scattering in solids is also confirmed in naturally occurring terrestrial rocks, and in previously published reflectance studies. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material is only a thin coating on Dione's surface, and by extension is only a thin coating on Phoebe, Hyperion, and Iapetus, although the dark material abundance appears higher on Iapetus, and may be locally thick. As previously concluded for Phoebe, the dark material appears to be external to the Saturn system and may be cometary in origin. We also report a possible detection of material around Dione which may indicate Dione is active and contributes material to the E-ring, but this observation must be confirmed.  相似文献   

15.
Carlos E. Chavez 《Icarus》2009,203(1):233-237
In this article we explore the aspect of the F ring with respect to the anti-alignment configuration between the ring and Prometheus. We focus our attention on the shape of the F ring’s azimuthal channels which were first reported by Porco et al. (Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R. [2005] Science, 307, 1226-1236) and numerically explored by Murray et al. (Murray, C.D., Chavez, C., Beurle, K., Cooper, N., Evans, M.W., Burns, J.A., Porco, C.C. [2005] Nature 437, 1326-1329) who found excellent agreement between Cassini’s ISS reprojected images and their numerical model via a direct comparison. We find that for anti-alignment the channels are wider and go deeper inside the ring material. From our numerical model we find a new feature, an island in the middle of the channel. This island is made up of the particles that have been perturbed the most by Prometheus and only appears when this satellite is close to apoapsis. In addition, plots of the anti-alignment configuration for different orbital stages of Prometheus are obtained and discussed here.  相似文献   

16.
Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ∼2.0 μm, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active “tiger stripes” in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons.  相似文献   

17.
Some recent MER Rover Opportunity results on ancient sedimentary rocks from Mars describe sandstones originated from the chemical weathering of olivine basalts by acidic waters [Squyres, S.W., Knoll, A.H., 2005. Earth Planet. Sci. Lett. 240, 1-10]. The absence of protective components in early Mars atmosphere forced any possible primordial life forms to deal with high doses of UV radiation. A similar situation occurred on the primitive Earth during the development of early life in the Archean [Berkner, L.V., Marshall, L.C., 1965. J. Atmos. Sci. 22 (3), 225-261; Kasting, J.F., 1993. Science 259, 920-926]. It is known that some cellular and/or external components can shield organisms from damaging UV radiation or quench its toxic effects [Olson, J.M., Pierson, B.K., 1986. Photosynth. Res. 9, 251-259; García-Pichel, F., 1998. Origins Life Evol. B 28, 321-347; Cockell, C., Rettberg, P., Horneck, G., Scherer, K., Stokes, M.D., 2003. Polar Biol. 26, 62-69]. The effectiveness of iron minerals for UV protection has also been reported [Phoenix, V.R., Konhauser, K.O., Adams, D.G., Bottrell, S.H., 2001. Geology 29 (9), 823-826], but nothing is known about the effect of iron in solution. Here we demonstrate the protective effect of soluble ferric iron against UV radiation on acidophilic photosynthetic microorganisms. These results offer an interesting alternative means of protection for life on the surface of early Mars and Earth, especially in light of the geochemical conditions in which the sedimentary minerals, jarosite and goethite, recently reported by the MER missions, were formed [Squyres, S.W., Arvidson, R.E., Bell III, J.F., Brückner, J., Cabrol, N.A., Calvin, W., Carr, M.H., Christensen, P.R., Clark, B.C., Crumpler, L., Des Marais, D.J., d'Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J.A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K.E., Hviid, S., Johnson, J., Klingelhöfer, G., Knoll, A.H., Landis, G., Lemmon, M., Li, R., Madsen, M.B., Malin, M.C., McLennan, S.M., McSween, H.Y., Ming, D.W., Moersch, J., Morris, R.V., Parker, T., Rice Jr., J.W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L.A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., Yen, A., 2004. Science 306, 1698-1703; Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza Jr., P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E., 2004. Science 306, 1740-1745].  相似文献   

18.
In 2007, the asteroid Kalliope will reach one of its annual equinoxes. As a consequence, its small satellite Linus orbiting in the equatorial plane will undergo a season of mutual eclipses and occultations very similar to the one that the Galilean satellites undergo every 6 years. This paper is aimed at preparing a campaign of observations of these mutual events occurring from February to May 2007. This opportunity occurs only under favorable geometric conditions when the Sun and/or the Earth are close to the orbital plane of the system. This is the first international campaign devoted to the observation of photometric events within an asynchronous asteroidal binary system. We took advantage of a reliable orbit solution of Linus to predict a series of 24 mutual eclipses and 12 mutual occultations observable in the spring of 2007. Thanks to the brightness of Kalliope (mv?11), these observations are easy to perform even with a small telescope. Anomalous attenuation events could be observed lasting for about 1-3 h with amplitude up to 0.09 mag. The attenuations are of two distinct types that can clearly be identified as primary and secondary eclipses similar to those that have been previously observed in other minor planet binary systems [Pravec, P., Scheirich, P., Kusnirák, P., Sarounová, L., Mottola, S., Hahn, G., Brown, P., Esquerdo, G., Kaiser, N., Krzeminski, Z., Pray, D.P., Warner, B.D., Harris, A.W., Nolan, M.C., Howell, E.S., Benner, L.A.M., Margot, J.-L., Galád, A., Holliday, W., Hicks, M.D., Krugly, Yu.N., Tholen, D., Whiteley, R., Marchis, F., Degraff, D.R., Grauer, A., Larson, S., Velichko, F.P., Cooney, W.R., Stephens, R., Zhu, J., Kirsch, K., Dyvig, R., Snyder, L., Reddy, V., Moore, S., Gajdos, S., Világi, J., Masi, G., Higgins, D., Funkhouser, G., Knight, B., Slivan, S., Behrend, R., Grenon, M., Burki, G., Roy, R., Demeautis, C., Matter, D., Waelchli, N., Revaz, Y., Klotz, A., Rieugné, M., Thierry, P., Cotrez, V., Brunetto, L., Kober, G., 2006. Photometric survey of binary near-Earth asteroids. Icarus 181, 63-93]. With these favorable circumstances, such photometric observations will provide us tight constraints regarding physical properties of Linus such as the size, shape and synodic spin period.  相似文献   

19.
Ethane spectral lines were observed in emission from Titan in August 1993, October 1995, and September 1996, at a spectral resolution of λ/Δλ≈106, at wavelength 11.7−11.9 μm using the Goddard Infrared Heterodyne Spectrometer at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The ethane mole fraction is determined to be (8.8±2.2)×10−6 (68.3% confidence limits, “1σ”), averaging the retrievals from each observing run obtained using the “recommended” thermal profile of R. V. Yelle, D. Strobel, E. Lellouch, and D. Gautier (1997, in Huygens: Science, Payload, and Mission (J.-P. Lebreton, Ed.), pp. 243-256, European Space Agency SP-1177).  相似文献   

20.
Thermal infrared spectra of Saturn from 10-1400 cm−1 at 15 cm−1 spectral resolution and a spatial resolution of 1°-2° latitude have been obtained by the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297]. Many thousands of spectra, acquired over eighteen-months of observations, are analysed using an optimal estimation retrieval code [Irwin, P.G.J., Parrish, P., Fouchet, T., Calcutt, S.B., Taylor, F.W., Simon-Miller, A.A., Nixon, C.A., 2004. Icarus 172, 37-49] to retrieve the temperature structure and para-hydrogen distribution over Saturn's northern (winter) and southern (summer) hemispheres. The vertical temperature structure is analysed in detail to study seasonal asymmetries in the tropopause height (65-90 mbar), the location of the radiative-convective boundary (350-500 mbar), and the variation with latitude of a temperature knee (between 150 and 300 mbar) which was first observed in inversions of Voyager/IRIS spectra [Hanel, R., and 15 colleagues, 1981. Science 212, 192-200; Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J.C., Pirraglia, J., Samuelson, R., Cruikshank, D.P., Gautier, D., Gierasch, P.J., Horn, L., Ponnamperuma, C., 1982. Science 215, 544-548]. Uncertainties due to both the modelling of spectral absorptions (collision-induced absorption coefficients, tropospheric hazes, helium abundance) and the nature of our retrieval algorithm are quantified.Temperatures in the stratosphere near 1 mbar show a 25-30 K temperature difference between the north pole and south pole. This asymmetry becomes less pronounced with depth as the radiative time constant for the atmospheric response increases at deeper pressure levels. Hemispherically-symmetric small-scale temperature structures associated with zonal winds are superimposed onto the temperature asymmetry for pressures greater than 100 mbar. The para-hydrogen fraction in the 100-400 mbar range is greater than equilibrium predictions for the southern hemisphere and parts of the northern hemisphere, and less than equilibrium predictions polewards of 40° N.The temperature knee between 150-300 mbar is larger in the summer hemisphere than in the winter, smaller and higher at the equator, deeper and larger in the equatorial belts and small at the poles. Solar heating on tropospheric haze is proposed as a possible mechanism for this effect; the increased efficiency of ortho- to para-hydrogen conversion in the southern hemisphere is consistent with the presence of larger aerosols in the summer hemisphere, which we demonstrate to be qualitatively consistent with previous studies of Saturn's tropospheric aerosol distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号