首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trojan asteroids undergo very large perturbations because of their resonance with Jupiter. Fortunately the secular evolution of quasi circular orbits remains simple—if we neglect the small short period perturbations. That study is done in the approximation of the three dimensional circular restricted three-body problem, with a small mass ratio μ—that is about 0.001 in the Sun Jupiter case. The Trojan asteroids can be defined as celestial bodies that have a “mean longitude”, M + ω + Ω, always different from that of Jupiter. In the vicinity of any circular Trojan orbit exists a set of “quasi-circular orbits” with the following properties: (A) Orbits of that set remain in that set with an eccentricity that remains of the order of the mass ratio μ. (B) The relative variations of the semi-major axis and the inclination remain of the order of ${\sqrt{\mu}}$ . (C) There exist corresponding “quasi integrals” the main terms of which have long-term relative variations of the order of μ only. For instance the product c(1 – cos i) where c is the modulus of the angular momentum and i the inclination. (D) The large perturbations affect essentially the difference “mean longitude of the Trojan asteroid minus mean longitude of Jupiter”. That difference can have very large perturbations that are characteristics of the “horseshoes orbit”. For small inclinations it is well known that this difference has two stable points near ±60° (Lagange equilibrium points L4 and L5) and an unstable point at 180° (L3). The stable longitude differences are function of the inclination and reach 180° for an inclination of 145°41′. Beyond that inclination only one equilibrium remains: a stable difference at 180°.  相似文献   

2.
We present some analytical results about the existence of periodic orbits for the planar restricted three body problem with dissipation considered recently by Celletti et?al. (CMDA 109, 265, 2011) We show that, under fairly general conditions on the dissipation term, the circular orbits cannot be continued to the dissipative framework. Moreover, we give general conditions for the occurrence or not of a Hopf bifurcation around the libration points L 4 and L 5. Our results are consistent with the numerical findings of Celletti et?al.  相似文献   

3.
Results from the OSO-6 Rutgers Zodiacal Light Analyzer experiment show photometric perturbations above the background in the anti-Sun line of sight. Sixteen successive lunations were examined, and the accumulated perturbations show a maximum value in the direction of the L4 and L5 Earth-Moon libration points. This is interpreted as a counterglow from a cloud of particles at the libration points. The average brightness of these libration clouds is 20 S10 Vis. The average angular size of the libration clouds is approximately 6 degrees. Their position varies from one lunation to the next, within an ellipsoidal zone centered on the libration point direction, with its semi-major axis, of approximately 6 degrees, nominally in the ecliptic and its semi-minor axis, of approximately 2 degrees perpendicular to the ecliptic. The position of these clouds with respect to the Lagrangian L4 and L5 points, is towards the Moon in the northern summer and away from the Moon in the northern winter.  相似文献   

4.
Small perturbations of spherical star clusters around massive black holes are studied. The presence of a black hole gives rise to peculiar distributions that have no stars with low angular momenta (falling into the so-called “loss cone”). The stability of such a distribution has been found to depend significantly on whether it monotonically increases with angular momentum L (from the loss cone up to L = L circ in circular orbits) or has a maximum at some intermediate L = L *. In the case of spherical systems under consideration, the loss-cone instability is shown to be possible only for nonmonotonic distributions.  相似文献   

5.
The orbits of fictitious bodies around Jupiter’s stable equilibrium points L 4 and L 5 were integrated for a fine grid of initial conditions up to 100 million years. We checked the validity of three different dynamical models, namely the spatial, restricted three body problem, a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of this investigation was to determine the size of the regions of motion around the equilibrium points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit. Whereas for small inclinations (up to i=20°) the stable regions are almost equally large, for moderate inclinations the size shrinks quite rapidly and disappears completely for i>60°. Additionally, we found a difference in the dynamics of orbits around L 4 which – according to the LCE – seem to be more stable than the ones around L 5.  相似文献   

6.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   

7.
We studied systematically cases of the families of non-symmetric periodic orbits in the planar restricted three-body problem. We took interesting information about the evolution, stability and termination of bifurcating families of various multiplicities. We found that the main families of simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals around a focal point-terminating point in x- at which the Jacobi constant is C  = 3 and their periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family approaches asymptotically its termination point infinite changes of stability to instability and vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral characteristics appear and each one of them generates infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate large chaotic regions near the corotation points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating family, which approaches its focal point, infinite loops, one inside the other, surrounding the unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points L4, L5 with infinite period. This is a new mechanism that produces very large degree of stochasticity. These conclusions help us to comprehend better the motions around the points L4 and L5 of Lagrange.  相似文献   

8.
Due to various perturbations, the collinear libration points of the real Earth–Moon system are not equilibrium points anymore. Under the assumption that the Moon’s motion is quasi-periodic, special quasi-periodic orbits called dynamical substitutes exist. These dynamical substitutes replace the geometrical collinear libration points as time-varying equilibrium points. In the paper, the dynamical substitutes of the three collinear libration points in the real Earth–Moon system are computed. For the points L 1 and L 2, linearized motions around the dynamical substitutes are described, and the variational equations of the dynamical substitutes are reduced to a form with a near constant coefficient matrix. Then higher order analytical formulae of the central manifolds are constructed. Using these analytical solutions as initial seeds, Lissajous orbits and halo orbits are computed with numerical algorithms.  相似文献   

9.
We have examined the effects of oblateness up to J 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to J 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < μ < μ c and unstable for \(\mu_{\mathrm{c}} \le \mu \le \frac {1}{2},\) where μ c is the critical mass ratio affected by the oblateness up to J 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient J4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.  相似文献   

10.
We have investigated an improved version of the classic restricted three-body problem where both primaries are considered oblate and are enclosed by a homogeneous circular planar cluster of material points centered at the mass center of the system. In this dynamical model we have examined the effect on the number and on the linear stability of the equilibrium locations of the small particle due to both, the primaries’ oblateness and the potential created by the circular cluster. We have drawn the zero-velocity surfaces and we have found that in addition to the usual five Lagrangian equilibrium points of the classic restricted three-body problem, there exist two new collinear points L n1,L n2 due to the potential from the circular cluster of material points. Numerical investigations reveal that with the increase in the mass of the circular cluster of material points, L n2 comes nearer to the more massive primary, while L n1 moves away from it. Owing to oblateness of the bodies, L n1 comes nearer to the more massive primary, while L n2 moves towards the less massive primary. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le \mu \le \frac{1}{2}$ , where μ c is the critical mass ratio influenced by oblateness of the primaries and the potential from the circular cluster of material points. The oblateness and the circular cluster of material points have destabilizing tendency.  相似文献   

11.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

12.
The configuration space around the triangular libration points in the Earth-Moon system is partitioned according to the stability of the motion. The regions aroundL 4 andL 5 are established where particles placed with zero initial velocity will librate. The complexity of the partitioning is revealed.  相似文献   

13.
By using Birkhoff's regularizing transformation, we study the evolution of some of the infinite j-k type families of collision periodic orbits with respect to the mass ratio μ as well as their stability and dynamical structure, in the planar restricted three-body problem. The μ-C characteristic curves of these families extend to the left of the μ-C diagram, to smaller values of μ and most of them go downwards, although some of them end by spiralling around the constant point S* (μ=0.47549, C=3) of the Bozis diagram (1970). Thus we know now the continuation of the families which go through collision periodic orbits of the Sun-Jupiter and Earth-Moon systems. We found new μ-C and x-C characteristic curves. Along each μ-C characteristic curve changes of stability to instability and vice versa and successive very small stable and very large unstable segments appear. Thus we found different types of bifurcations of families of collision periodic orbits. We found cases of infinite period doubling Feigenbaum bifurcations as well as bifurcations of new families of symmetric and non-symmetric collision periodic orbits of the same period. In general, all the families of collision periodic orbits are strongly unstable. Also, we found new x-C characteristic curves of j-type classes of symmetric periodic orbits generated from collision periodic orbits, for some given values of μ. As C varies along the μ-C or the x-C spiral characteristics, which approach their focal-terminating-point, infinite loops, one inside the other, surrounding the triangular points L4 and L5 are formed in their orbits. So, each terminating point corresponds to a collision asymptotic symmetric periodic orbit for the case of the μ-C curve or a non-collision asymptotic symmetric periodic orbit for the case of the x-C curve, that spiral into the points L4 and L5, with infinite period. All these are changes in the topology of the phase space and so in the dynamical properties of the restricted three-body problem.  相似文献   

14.
Orbital resonances tend to force bodies into noncircular orbits. If a body is also under the influence of an eccentricity-reducing medium, it will experience a secular change in semimajor axis which may be positive or negative depending on whether its orbit is exterior or interior to that of the perturbing body. Thus a dissipative medium can promote either a loss or a gain in orbital energy. This process may explain the resonant structure of the asteroid belt and of Saturn's rings. For reasonable early solar system parameters, it would clear a gap near the 2:1 resonance with Jupiter on a time scale of a few thousand years; the gap width would be comparable to the Kirkwood gap presently at the location in the asteroid belt. Similarly, a gap comparable in width to Cassini's division would be cleared in Saturn's rings at the 2:1 resonance with Mimas in ~106 yr. Most of the material from the gap would be deposited at the outer edge of ring B. The process would also affect the radial distribution of preplanetary material. Moreover, it provides an explanation for the large amplitude of the Titan-Hyperion libration. Consideration of the effects of dissipation on orbits near the stable L4 and L5 points of the restricted three-body problem indicates that energy loss causes particles to move away from these points. This results explains the large amplitude of Trojan asteroids about these points and the possible capture of Trojan into orbit about Jupiter.  相似文献   

15.
We examine the stability of the triangular Lagrange points L 4 and L 5 for secondary masses larger than the Gascheau??s value ${\mu_{\rm G}= (1-\sqrt{23/27}/2)= 0.0385208\ldots}$ (also known as the Routh value) in the restricted, planar circular three-body problem. Above that limit the triangular Lagrange points are linearly unstable. Here we show that between??? G and ${\mu \approx 0.039}$ , the L 4 and L 5 points are globally stable in the sense that a particle released at those points at zero velocity (in the corotating frame) remains in the vicinity of those points for an indefinite time. We also show that there exists a family of stable periodic orbits surrounding L 4 or L 5 for ${\mu \ge \mu_G}$ . We show that??? G is actually the first value of a series ${\mu_0 (=\mu_G), \mu_1,\ldots, \mu_i,\ldots}$ corresponding to successive period doublings of the orbits, which exhibit ${1, 2, \ldots, 2^i,\ldots}$ cycles around L 4 or L 5. Those orbits follow a Feigenbaum cascade leading to disappearance into chaos at a value ${\mu_\infty = 0.0463004\ldots}$ which generalizes Gascheau??s work.  相似文献   

16.
A necessary and sufficient condition is given for the unique normal forms about critical elements-equilibrium points and periodic orbits. With some applications to the Birkhoff's normal form along with its generalized form by K.R. Meyer, the restricted problem of three bodies near L4, the Birkohoff's normalization procedure, and the singular perturbation, of Hamiltonian systems are discussed.  相似文献   

17.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

18.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

19.
This paper investigates the motion of an infinitesimal body in the generalized restricted three-body problem. It is generalized in the sense that both primaries are radiating, oblate bodies, together with the effect of gravitational potential from a belt. It derives equations of the motion, locates positions of the equilibrium points and examines their linear stability. It has been found that, in addition to the usual five equilibrium points, there appear two new collinear points L n1, L n2 due to the potential from the belt, and in the presence of all these perturbations, the equilibrium points L 1, L 3 come nearer to the primaries; while L 2, L 4, L 5, L n1 move towards the less massive primary and L n2 moves away from it. The collinear equilibrium points remain unstable, while the triangular points are stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the oblateness and radiation of the primaries and potential from the belt, all of which have destabilizing tendency. A practical application of this model could be the study of the motion of a dust particle near the oblate, radiating binary stars systems surrounded by a belt.  相似文献   

20.
Due to the specific dynamics, the probes located at the halo orbits or Lissajous orbits around the Earth-Moon collinear libration point L1 or L2 are always studied in the synodic system to understand their trajectories. In fact, they are also orbiting the Earth in a distant Keplerian ellipse. Because of their intrinsic orbital instability, in the orbit prediction the initial errors propagate more prominently than those of the normal orbiting satellites, this requires special attention in the orbit design, maneuver, and control. Despite of all this, they are similar to the normal orbiting satellites in orbit determination and hardly require other special attentions. In this paper, the quantitative results of error propagation under the unstable dynamics, together with the theoretical analysis are presented. The results of precise orbit determination and short-arc orbit predictions are also shown, and compared with the results from the Beijing Aerospace Control Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号