首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis has been made of the fraction of ultra high energy cosmic rays (above 1018 eV) which could be due to processes involved in two possible ‘Models’. The first is the Giant Magnetic Halo Model and the second is the Dark Matter Halo Model. We find that the former, in which heavy nuclei are trapped in a giant halo, fails for energies above about 3 × 1019 eV. For the Dark Matter Halo Model, in which relic particles follow the “conventional” dark matter and whose decays give ultra high energy cosmic rays, the predicted anisotropies are much higher than those observed. The lack of observation of a finite flux from the Andromeda Galaxy means that the conclusion is insensitive to the spatial scale size of the assumed halo distribution. It is concluded that less than 10% of the ultra high energy cosmic rays come from relic particles in the Galactic halo.  相似文献   

2.
Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter H in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.  相似文献   

3.
We study the late-time cosmological viability of the solutions in the DGP braneworld scenario. We consider a quintessence field trapped on the normal branch of the DGP model and we suppose this scalar field is both minimally and non-minimally coupled to induced gravity on the brane. Since a successful cosmological model should therefore admit for a sequence of epochs: a radiation era, a sufficiently long matter dominated era and a final stable positively accelerated scaling solution, we analyze the cosmological properties of system in its critical points.  相似文献   

4.
As it is known, a good number of galaxies are observed to have counterrotating cores. A popular scenario to explain the formation of such galaxies is based on a secondary process of merging of galaxies with their satellites, or gas infall, or merger events between galaxies. An alternative mechanism, proposed by Voglis et al., 1991, and by Harsoula and Voglis 1998, could also be responsible for the formation of these galaxies directly from cosmological initial conditions (direct scenario). The novel mechanism was demonstrated by using quiet cosmological initial conditions in N-body simulations. In the present paper we extend our N-body simulations using clumpy initial conditions and show that this mechanism still works to create counterrotating galaxies. Counterrotation is a result of the considerable amount of memory of initial conditions surviving for times comparable to the Hubble time, despite the large degree of instability of individual orbits and the dramatic redistribution and mixing of the particles in phase space. We show, for example, that the particles remember, in a statistical sense, not only their distance from the center of mass (memory of energy), but also the initial orientation of their position relative to the direction of an external tidal field, which determines the sign and the amount of angular momentum that is transferred to the particles of the system.  相似文献   

5.
We study the dynamics of the Friedmann–Lemaitre–Robertson–Walker (FLRW) flat cosmological models in which the vacuum energy varies with time,  Λ( t )  . In this model, we find that the main cosmological functions such as the scale factor of the universe and the Hubble flow are defined in terms of exponential functions. Applying a joint likelihood analysis of the recent Type Ia supernovae data, the cosmic microwave background shift parameter and the baryonic acoustic oscillations traced by the Sloan Digital Sky Survey (SDSS) galaxies, we place tight constraints on the main cosmological parameters of the  Λ( t )  scenario. Also, we compare the  Λ( t )  model with the traditional Λ cosmology and we find that the former model provides a Hubble expansion which compares well with that of the Λ cosmology. However, the  Λ( t )  scenario predicts stronger small scale dynamics, which implies a faster growth rate of perturbations with respect to the usual Λ cosmology, despite the fact that they share the same equation of state parameter. In this framework, we find that galaxy clusters in the  Λ( t )  model appear to form earlier than in the Λ model.  相似文献   

6.
We review the status of indirect Dark Matter searches, focusing in particular on the connection with gamma-ray Astrophysics. After a brief introduction where we review the strong motivations for indirect searches, we tackle the question of how one can “discover” Dark Matter particles with astrophysical observations. To this purpose, I will discuss some recent conflicting claims that have generated some confusion in the field, and present new strategies that may provide robust enough evidence to claim discovery, based only on astrophysical observations.  相似文献   

7.
We present a model where inflation and Dark Matter takes place via a single scalar field ?. Without introducing any new parameters we are able unify inflation and Dark Matter using a scalar field ? that accounts for inflation at an early epoch while it gives a Dark Matter WIMP particle at low energies. After inflation our universe must be reheated and we must have a long period of radiation dominated before the epoch of Dark Matter. Typically the inflaton decays while it oscillates around the minimum of its potential. If the inflaton decay is not complete or sufficient then the remaining energy density of the inflaton after reheating must be fine tuned to give the correct amount of Dark Matter. An essential feature here, is that Dark Matter-Inflaton particle is produced at low energies without fine tuning or new parameters. This process uses the same coupling g as for the inflaton decay. Once the field ? becomes non-relativistic it will decouple as any WIMP particle, since n? is exponentially suppressed. The correct amount of Dark Matter determines the cross section and we have a constraint between the coupling g and the mass mo of ?. The unification scheme we present here has four free parameters, two for the scalar potential V(?) given by the inflation parameter λ of the quartic term and the mass mo. The other two parameters are the coupling g between the inflaton ? and a scalar filed φ and the coupling h between φ with standard model particles ψ or χ. These four parameters are already present in models of inflation and reheating process, without considering Dark Matter. Therefore, our unification scheme does not increase the number of parameters and it accomplishes the desired unification between the inflaton and Dark Matter for free.  相似文献   

8.
In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy), by assuming the deceleration parameter as a linear function of the Hubble function. This results in a time-dependent deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) interacts with dust to produce a new law for the density. As per our model, our universe is at present in a phantom phase after passing through a quintessence phase in the past. The physical importance of the two-fluid scenario is described in various aspects. The model is shown to satisfy current observational constraints such as recent Planck results. Various cosmological parameters relating to the history of the universe have been investigated.  相似文献   

9.
We generalize the holographic dark energy model described in Hubble length IR cutoff by assuming a slowly time varying function for holographic parameter c 2. We calculate the evolution of EoS parameter and the deceleration parameter as well as the evolution of dark energy density parameter of the model in flat FRW universe. We show that in this model the phantom line is crossed from quintessence regime to phantom regime which is in agreement with observation. The evolution of deceleration parameter of the model indicates the transition from decelerated to accelerated expansion consistently with observation. Eventually, we show that the holographic dark energy model with Hubble horizon IR cutoff can interpret the pressureless dark matter era at the early time and dark energy dominated phase later. The singularity of the model is also calculated.  相似文献   

10.
Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and WD¢\Omega_{D}' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.  相似文献   

11.
In this work, I consider the logarithmic-corrected and the power-law corrected versions of the holographic dark energy (HDE) model in the non-flat FRW universe filled with a viscous Dark Energy (DE) interacting with Dark Matter (DM). I propose to replace the infra-red cut-off with the inverse of the Ricci scalar curvature R. I obtain the equation of state (EoS) parameter ω Λ , the deceleration parameter q and the evolution of energy density parameter $\varOmega_{D}'$ in the presence of interaction between DE and DM for both corrections. I study the correspondence of the logarithmic entropy corrected Ricci Dark Dnergy (LECRDE) and power-law entropy corrected Ricci Dark Energy (PLECRDE) models with the the Modified Chaplygin Gas (MCG) and some scalar fields including tachyon, K-essence, dilaton and quintessence. I also make comparisons with previous results.  相似文献   

12.
In this work, we study the New Agegraphic Dark Energy (NADE) model (which contains the conformal time η as infrared cut-off) in the framework of Brans-Dicke cosmology with chameleon scalar field which is non-minimally coupled to the matter field. Considering interacting Dark Energy and Dark Matter (DM), we calculate some relevant cosmological parameters, i.e. the equation of state (EoS) parameter, the deceleration parameter q and the evolution of the energy density parameter $\varOmega_{D}'$ for different forms of scale factors, i.e. the power-law, the emergent, the intermediate and the logamediate ones, which leads to different expressions of η.  相似文献   

13.
We show that in the framework of R2 gravity and in the linearized approach it is possible to obtain spherically symmetric stationary states that can be used as a model for galaxies. Such approach could represent a solution to the Dark Matter Problem. In fact, in the model, the Ricci curvature generates a high energy term that can in principle be identified as the dark matter field making up the galaxy. The model can also help to have a better understanding on the theoretical basis of Einstein-Vlasov systems. Specifically, we discuss, in the linearized R2 gravity, the solutions of a Klein-Gordon equation for the spacetime curvature. Such solutions describe high energy scalarons, a field that in the context of galactic dynamics can be interpreted like the no-light-emitting galactic component. That is, these particles can be figured out like wave-packets showing stationary solutions in the Einstein-Vlasov system. In such approximation, the energy of the particles can be thought of as the galactic dark matter component that guarantees the galaxy equilibrium. Thus, because of the high energy of such particles the coupling constant of the R2-term in the gravitational action comes to be very small with respect to the linear term R. In this way, the deviation from standard General Relativity is very weak, and in principle the theory could pass the Solar System tests. As pertinent to the issue under analysis in this paper, we present an analysis on the gravitational lensing phenomena within this framework.Although the main goal of this paper is to give a potential solution to the Dark Matter Problem within galaxies, we add a section where we show that an important property of the Bullet Cluster can in principle be explained in the scenario introduced in this work.To the end, we discuss the generic prospective to give rise to the Dark Matter component of most galaxies within extended gravity.  相似文献   

14.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

15.
We develop a method for constructing exact cosmological solutions in brane world cosmology. New classes of cosmological solutions on Randall–Sandrum brane are obtained. The superpotential and Hubble parameter are represented in quadratures. These solutions have inflationary phases under general assumptions and also describe an exit from the inflationary phase without a fine tuning of the parameters. Another class solutions can describe the current phase of accelerated expansion with or without possible exit from it.  相似文献   

16.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

17.
We study Bianchi type-III cosmological model filled with perfect fluid in the presence of cosmological constant Λ(t). The Hubble law utilised yields a constant value of deceleration parameter. Physical and Kinematical properties of the model have also studied.   相似文献   

18.
Flat directions in generic supersymmetric theories can change the thermal history of the Universe. A novel scenario was proposed earlier where the vacuum expectation value of the flat directions induces large masses for all the gauge bosons and gauginos. This delays the thermalization of the Universe after inflation and solves the gravitino problem. In this article we perform a detailed calculation of the above scenario. We include the appropriate initial state particle distribution functions, consider the conditions for the feasibility of the non-thermal scenario, and investigate phase space suppression of gravitino production in the context of heavy gauge bosons and gauginos in the final state. We find that the total gravitino abundance generated is consistent with cosmological constraints.  相似文献   

19.
《New Astronomy》2002,7(6):279-282
We show that X-ray clusters would have cooled substantially over a Hubble time by transport of heat from their hot interior to the their envelope, if the heat conductivity had not been heavily suppressed relative to the Spitzer value due to magnetic fields. The suppression is required in order for the observed abundance of hot X-ray clusters to be consistent with predictions from popular cosmological models. If a similar or stronger suppression factor applies to cluster cores, then thermal conduction cannot be the mechanism that prevents cooling flows there.  相似文献   

20.
A singularity free cosmological model is obtained in a homogeneous and isotropic background with a specific form of the Hubble parameter in the presence of an interacting dark energy represented by a time-varying cosmological constant in general relativity.Different cases that arose have been extensively studied for different values of the curvature parameter.Some interesting results have been found with this form of the Hubble parameter to meet the possible negative value of the deceleration parameter(-1/3 q 0) as the current observations reveal.For some particular values of these parameters,the model reduces to Berman's model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号