首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We present CCD BVI photometry of the old open cluster Berkeley 21, one of the most distant clusters in the Galactic anticentre direction, and possibly the lowest metallicity object in the open clusters sample. Its position and metal abundance make it very important for the study of the Galactic disc. Using the synthetic colour–magnitude diagram method, we estimate values for the distance modulus ( m  − M )0 = 13.4–13.6, reddening E ( B  −  V ) = 0.74–0.78 (with possible differential absorption), and age = 2.2–2.5 Gyr.  相似文献   

2.
We present wide-area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B -band magnitudes and their  ( U − B ) o   versus  ( B − I ) o   colours. A colour–colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates, which supports previous claims of a low specific frequency for NGC 3379.
The Milky Way and M31 reveal blue and red subpopulations, with  ( U − B ) o   and  ( B − I ) o   colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston and Brocato et al. are consistent with both subpopulations being old, and with metallicities of  [Fe/H]∼−1.5  and −0.6 for the blue and red subpopulations, respectively. The models of Worthey do not reproduce the  ( U − B ) o   colours of the red (metal-rich) subpopulation for any modelled age.
For NGC 3379 we detect a blue subpopulation with similar colours, and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H]∼−0.6.  相似文献   

3.
We present CCD photometry in the Washington system C and T 1 passbands down to   T 1∼ 22  in the fields of L35, L45, L49, L50, L62, L63 and L85, seven poorly studied star clusters in the inner region of the Small Magellanic Cloud (SMC). We measured T 1 magnitudes and   C − T 1  colours for a total of 114 826 stars distributed throughout cluster areas of 13.7 × 13.7 arcmin2 each. Cluster radii were estimated from star counts distributed throughout the entire observed fields. The seven clusters are generally characterized by a relatively small angular size and by a high field star contamination. We performed an in-depth analysis of the field star contamination of the colour–magnitude diagrams (CMDs), and statistically cleaned the cluster CMDs. Based on the best fits of isochrones computed by the Padova group to the  ( T 1,  C − T 1)  CMDs, we derive ages for the sample, assuming Z = 0.004, finding ages between 25 Myr and 1.2 Gyr. We then examined different relationships between positions in the SMC, age and metallicity of a larger sample of clusters including our previous work whose ages and metallicities are on the same scale used in this paper. We confirm previous results in the sense that the further a cluster is from the centre of the galaxy, the older and more metal poor it is, with some dispersion; although clusters associated with the Magellanic Bridge clearly do not obey the general trend. The number of clusters within ∼ 2° of the SMC centre appears to have increased substantially after ∼2.5 Gyr ago, hinting at a burst.  相似文献   

4.
We compile a sample of Sun-like stars with accurate effective temperatures, metallicities and colours (from the ultraviolet to the near-infrared). A crucial improvement is that the effective temperature scale of the stars has recently been established as both accurate and precise through direct measurement of angular diameters obtained with stellar interferometers. We fit the colours as a function of effective temperature and metallicity, and derive colour estimates for the Sun in the Johnson–Cousins, Tycho, Strömgren, 2MASS and SDSS photometric systems. For  ( B − V )  , we favour the 'red' colour 0.64 versus the 'blue' colour 0.62 of other recent papers, but both values are consistent within the errors; we ascribe the difference to the selection of Sun-like stars versus interpolation of wider colour– T eff–metallicity relations.  相似文献   

5.
We present new determinations of bolometric corrections and effective temperature scales as a function of infrared optical colours, using a large data base of photometric observations of about 6500 Population II giants in Galactic globular clusters (GGCs), covering a wide range in metallicity (−2.0 < [Fe/H] < 0.0).   New relations for BC K versus ( V  −  K ) , ( J  −  K ) and BC V versus ( B  −  V ), ( V  −  I ), ( V  −  J ), and new calibrations for T eff, using both an empirical relation and model atmospheres, are provided.   Moreover, an empirical relation to derive the R parameter of the infrared flux method as a function of the stellar temperature is also presented.  相似文献   

6.
We present combined optical/near-infrared photometry ( BVIK ) for six open clusters – M35, M37, NGC 1817, NGC 2477, NGC 2420 and M67. The open clusters span an age range from 150 Myr to 4 Gyr and have metal abundances from  [Fe/H]=−0.27  to +0.09 dex. We have utilized these data to test the robustness of theoretical main sequences constructed by several groups as denoted by the following designations – Padova, Baraffe, Y2, Geneva and Siess. The comparisons of the models with the observations have been performed in the  [ MV , ( B − V )0], [ MV , ( V − I )0]  and  [ MV , ( V − K )0]  colour–magnitude diagrams as well as the distance-independent  [( V − K )0, ( B − V )0]  and  [( V − K )0, ( V − I )0]  two-colour diagrams. We conclude that none of the theoretical models reproduces the observational data in a consistent manner over the magnitude and colour range of the unevolved main sequence. In particular, there are significant zero-point and shape differences between the models and the observations. We speculate that the crux of the problem lies in the precise mismatch between theoretical and observational colour–temperature relations. These results underscore the importance of pursuing the study of stellar structure and stellar modelling with even greater intensity.  相似文献   

7.
Charge-coupled device (CCD) photometry in the Johnson V , Kron–Cousins I and Washington CMT 1 systems is presented in the field of the poorly known open cluster NGC 2627. Four independent Washington abundance indices yield a mean cluster metallicity of  [Fe/H]=−0.12 ± 0.08  , which is compatible with the existence of a radial gradient in the Galactic disc. The resultant colour–magnitude diagrams indicate that the cluster is an intermediate-age object of 1.4 Gyr. Based on the best fits of the Geneva group's isochrones to the ( V , V − I ) and  ( T 1, C − T 1)  diagrams, we estimate   E ( V − I ) = 0.25 ± 0.05  and   V − MV = 11.80 ± 0.25  for  log  t = 9.15  , and   E ( C − T 1) = 0.23 ± 0.07  and   T 1− M T 1= 11.85 ± 0.25  for  log  t = 9.10  , respectively, assuming solar metal content. The derived reddening value   E ( C − T 1)  implies   E ( B − V ) = 0.12 ± 0.07  and a distance from the Sun of  2.0 ± 0.4 kpc  . Using the WEBDA data base and the available literature, we re-examined the overall properties of all the open clusters with ages between 0.6 and 2.5 Gyr. We identified peaks of cluster formation at 0.7–0.8, 1.0–1.1, 1.6–1.7 and 2.0–2.1 Gyr, separated by relative quiescent epochs of ∼0.2–0.3 Gyr. We also estimated a radial abundance gradient of  −0.08 ± 0.02  , which is consistent with the most recent determinations for the Galactic disc, but no clear evidence for a gradient perpendicular to the Galactic plane is found.  相似文献   

8.
The Sculptor dwarf spheroidal galaxy has a giant branch with a significant spread in colour, symptomatic of an intrinsic age–metallicity spread. We present here a detailed study of the Sculptor giant branch and horizontal branch (HB) morphology, combining new near-infrared photometry from the Cambridge Infrared Survey Instrument (CIRSI), with optical data from the European Southern Observatory Wide Field Imager. For a Sculptor-like old and generally metal-poor system, the position of red giant branch (RGB) and asymptotic giant branch (AGB) stars on the colour–magnitude diagram (CMD) is mainly metallicity dependent. The advantage of using optical–near-infrared colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the HB morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical–near-infrared colours and the HB can help break the age–metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the near-infrared and the optical luminosity functions, and derive from them a mean metallicity of  [M/H]=−1.3 ± 0.1  . From isochrone fitting we derive a mean metallicity of  [Fe/H]=−1.42  with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the 'second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr.  相似文献   

9.
We have derived ages and metallicities from co-added spectra of 131 globular clusters associated with the giant elliptical galaxy NGC 4472. Based upon a calibration with Galactic globular clusters, we find that our sample of globular clusters in NGC 4472 span a metallicity range of approximately −1.6≤[Fe/H]≤0 dex. There is evidence of a radial metallicity gradient in the globular cluster system which is steeper than that seen in the underlying starlight. Determination of the absolute ages of the globular clusters is uncertain, but formally, the metal-poor population of globular clusters has an age of 14.5±4 Gyr and the metal-rich population is 13.8±6 Gyr old. Monte Carlo simulations indicate that the globular cluster populations present in these data are older than 6 Gyr at the 95 per cent confidence level. We find that within the uncertainties, the globular clusters are old and coeval, implying that the bimodality seen in the broadband colours primarily reflects metallicity and not age differences.  相似文献   

10.
Using metallicities from the literature, combined with the Revised Bologna Catalogue of photometric data for M31 clusters and cluster candidates [the latter of which is the most comprehensive catalogue of M31 clusters currently available, including 337 confirmed globular clusters (GCs) and 688 GC candidates], we determine 443 reddening values and intrinsic colours, and 209 metallicities for individual clusters without spectroscopic observations. This, the largest sample of M31 GCs presently available, is then used to analyse the metallicity distribution of M31 GCs, which is bimodal with peaks at [Fe/H]≈−1.7 and −0.7 dex. An exploration of metallicities as a function of radius from the M31 centre shows a metallicity gradient for the metal-poor GCs, but no such gradient for the metal-rich GCs. Our results show that the metal-rich clusters appear as a centrally concentrated spatial distribution; however, the metal-poor clusters tend to be less spatially concentrated. There is no correlation between luminosity and metallicity among the M31 sample clusters, which indicates that self-enrichment is indeed unimportant for cluster formation in M31.
The reddening distribution shows that slightly more than half of the GCs are affected by a reddening of E ( B − V ) ≲ 0.2 mag; the mean reddening value is   E ( B − V ) = 0.28+0.23−0.14 mag  . The spatial distribution of the reddening values indicates that the reddening on the north-western side of the M31 disc is more significant than that on the south-eastern side, which is consistent with the conclusion that the north-western side is nearer to us.  相似文献   

11.
We present a new luminosity–colour relation based on trigonometric parallaxes for thin-disc main-sequence stars in Sloan Digital Sky Survey (SDSS) photometry. We matched stars from the newly reduced Hipparcos catalogue with the ones taken from Two-Micron All-Sky Survey (2MASS) All-Sky Catalogue of Point Sources, and applied a series of constraints, i.e. relative parallax errors  (σπ/π≤ 0.05)  , metallicity  (−0.30 ≤[M/H]≤ 0.20 dex)  , age  (0 ≤ t ≤ 10 Gyr)  and surface gravity  (log  g > 4)  , and obtained a sample of thin-disc main-sequence stars. Then, we used our previous transformation equations ( Bilir et al. 2008a ) between SDSS and 2MASS photometries and calibrated the   Mg   absolute magnitudes to the  ( g − r )0  and  ( r − i )0  colours. The transformation formulae between 2MASS and SDSS photometries along with the absolute magnitude calibration provide space densities for bright stars which saturate the SDSS magnitudes.  相似文献   

12.
Ground-based UBV photometry of two fields in the northern disc of the Large Magellanic Cloud (LMC) is presented. A distance modulus of ( m − M )0=18.41±0.04 and an extinction of A V =0.30±0.05 have been calculated for these fields. The measurable star formation history of the LMC began no more than 12 Gyr ago with a strong star‐forming episode with [Fe/H]=−1.63±0.10 that accounted for approximately half (by mass) of the total star formation of the LMC in the first 3 Gyr. The data do not give accurate star formation rates during intermediate ages, but there appears to have been a recent increase in the star formation rate in these fields, beginning approximately 2.5 Gyr ago, with the current metallicity in the region being [Fe/H]=−0.38±0.10. The two fields have had very similar star formation rates until 200 Myr ago, at which point one shows a large increase.  相似文献   

13.
We present Two Micron All Sky Survey photometry for 216 symbiotic and possible symbiotic stars. This represents the most comprehensive near-infrared photometry for these sources which has been published to date. The results are used to define the statistics of S- and D-type stars; to investigate the photometric properties of Magellanic S-type symbiotics; and to define the possible evolution of D-type symbiotics within the J − H / H − K S colour plane. It appears that the colours of D-type symbiotics are consistent with differing mass-loss rates d M /d t , provided that the grains have a silicate-like composition, and maximum temperatures of the order of ∼800 K.  相似文献   

14.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

15.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   

16.
Colour–magnitude diagrams are presented for the first time for L32, L38, K28 (L43), K44 (L68) and L116, which are clusters projected on to the outer parts of the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters, allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turn-off, and metallicities from the red giant branch locus. The clusters have ages in the range 2–6 Gyr , and metallicities in the range −1.65<[Fe/H]<−1.10, increasing the sample of intermediate-age clusters in the SMC. L116, the outermost cluster projected on to the SMC, is a foreground cluster, and somewhat closer to us than the Large Magellanic Cloud. Our results, combined with those for other clusters in the literature, show epochs of sudden chemical enrichment in the age–metallicity plane, which favour a bursting star formation history as opposed to a continuous one for the SMC.  相似文献   

17.
We present deep CCD BVI photometry of the distant, old open cluster Berkeley 22, covering from the red giant branch (RGB) to about six magnitudes below the main-sequence (MS) turn-off. Using the synthetic colour–magnitude diagram method with three different types of stellar evolutionary tracks, we estimate values and theoretical uncertainties of the distance modulus ( m − M )0, reddening E ( B − V ), age τ and approximate metallicity. The best fit to the data is obtained for  13.8 ≤ ( m − M )0≤ 14.1,  0.64 ≤ E ( B − V ) ≤ 0.65,  2.0 ≤τ≤ 2.5 Gyr  (depending on the amount of overshooting from convective regions adopted in the stellar models) and solar metallicity.  相似文献   

18.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   

19.
We present the results of a deep optical–near-infrared (optical–NIR) multi-epoch survey covering 2.5 deg2 of the Pleiades open star cluster to search for new very low-mass brown dwarf members. A significant (∼5 yr) epoch difference exists between the optical (CFH12k I -, Z -band) and NIR (UKIRT WFCAM J -band) observations. We construct I , I − Z and Z , Z − J colour–magnitude diagrams to select candidate cluster members. Proper motions are computed for all candidate members and compared to the background field objects to further refine the sample. We recover all known cluster members within the area of our survey. In addition, we have discovered nine new candidate brown dwarf cluster members. The seven faintest candidates have red Z − J colours and show blue NIR colours. These are consistent with being L- and T-type Pleiads. Theoretical models predict their masses to be around 11 M Jup.  相似文献   

20.
We present CCD observations for the distant northern open star clusters Berkeley 81, Berkeley 99, NGC 6603 and NGC 7044 in B V I photometric passbands. A total of 9 900 stars have been observed in fields of about 6 × 6 arcmin2 of the sky around the clusters. Colour–magnitude diagrams in V , ( B  −  V ) and V , ( V  −  I ) have been generated down to V  = 22 mag and, for the first time, such diagrams have been produced for the clusters Berkeley 81 and Berkeley 99. The data serve as a base for the study of mass functions and for comparison with theoretical models. Analysis of the radial distribution of stellar surface density indicates that the radius values for Berkeley 81, Berkeley 99, NGC 6603 and NGC 7044 are 2.7, 2.8, 2.8 and 2.2 arcmin respectively. By fitting the latest convective core overshooting isochrones to the colour–magnitude diagram and using its morphological features, reddenings, distances and ages of the star clusters have been determined. Broad but well-defined main sequences with stellar evolutionary effects in the brighter stars are clearly visible in colour–magnitude diagrams of all the clusters under study. Some blue stragglers along with well-developed giant branches and red giant clumps are also clearly seen in all of them. The clusters studied here are located at a distance of ∼ 3 kpc, except for Berkeley 99 which is located at a distance of 4.9 kpc. Their linear sizes lie between 3.8 and 8.0 pc; E ( B  −  V ) values range from 0.3 to 1.0 mag, while their ages are between 0.5 and 3.2 Gyr. Thus the star clusters studied here are of intermediate and high age but are compact and distant objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号