首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract— About 100 cobble-sized samples collected from the surface of the central polymict breccia formation of Haughton impact crater, Canada, have been studied microscopically and chemically. Breccia clasts derived from the 1700 m deep Precambian basement consist of 13 rock types which can be grouped into sillimanite- and garnet-bearing gneiss; alkali feldspar-rich aplitic or biotite-hornblende-bearing gneiss; biotite and hornblende gneiss; apatite-rich biotite and biotite-hornblende gneiss; calcitediopside gneiss; amphibolite; tonalitic orthogneiss; and basalts. The range of chemical compositions of these rocks is wide: e.g., SiO2 ranges from 40–85 wt.%; Al2O3 from 7–20 wt.%; CaO from 0.01–25 wt.%; or P2Os from <0.01–5 wt.%. Nearly all samples of crystalline rocks are shock metamorphosed up to about 60 GPa. Most conspicuous is the absence of whole-rock melts and the very rare occurrence of unshocked rocks. The 45 samples examined can be classified into the following shock stages: stage 0 (<5 GPa): 4.5%, stage Ia (10–20 GPa): 9.0%, stage Ib (20–35 GPa): 33%, stage II (35–45 GPa): 29%, stage III (45–55 GPa): 18%, stage III–IV (55–60 GPa): 6.5%. Among Paleozoic sedimentary rock clasts higher degrees of shock than within crystalline rocks were observed such as highly vesiculated, whole-rock melts of sandstones and shales. Within the northern and eastern sectors of the allochthonous breccia no distinct radial variation of the cobble-sized lithic clasts regarding abundance, rock type, and degree of shock was observed, with the exception that clasts of shock-melted sedimentary rocks and of highly shocked basement rocks (stage III–IV) are strongly concentrated near the center of the crater. Based on our field and laboratory investigations we conclude that vaporization and melting due to the Haughton impact affected the lower section of the sedimentary strata from about 900 to 1700 m depth (Eleanor River limestones and dolomites, Lower Ordovician and Cambrian limestones, dolomites, shales, and sandstones). The 60-GPa shock pressure isobar reached only the uppermost basement rocks so that whole rock melting of the crystalline rocks was not possible.  相似文献   

2.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

3.
Abstract— The central uplift of the 40-km wide Araguainha impact structure, Brazil, consists of a ring, about 8 km in diameter, of up to 150-m high blocks of Devonian Furnas sandstone, which surround a central depression of elliptical shape (4.5 × 3.0 km). The depression is occupied by a pre-Devonian alkali-feldspar granite, shocked by pressures of 20–25 GPa and permeated by cataclastic shear zones and dikes of shocked granitic material. The granite is flanked and partly covered by several impact breccias: (1) Impact breccia with melt matrix overlies the granite in places and forms hills, bordering the granitic center in the S and SW. It is chemically identical with the granite and consists of thermally altered granitic clasts in a matrix of sanidine, quartz, biotite, muscovite, chlorite and riebeckite. (2) Polymict breccias form hills which border the central depression in the N and NW. Components are unshocked and shocked sediments, shock-melted sandstone, shocked granite and shock melt rocks in irregular masses and individual bodies, embedded in a fine-grained matrix. 40Ar/39Ar analyses show that the melt rocks solidified 246 Ma ago, indicating that the impact occurred at near the Permian-Triassic boundary, possibly when the area was covered by a shallow sea. The present chemistry and petrography of the melt rocks suggest that by reacting with seawater granitic impact melt was depleted of K and Rb and enriched in Na, and that later diagenetic processes produced replacement of feldspar by quartz and deposition of hematite. (3) Monomict breccias, consisting of unshocked, shocked and shock-fused quartz sandstones, form hills which surround the central depression in the SE and S. The Araguainha structure is an eroded complex crater, produced by an impact, 246 Ma ago. The depth of excavation was about 2.4 km, comprising Permian, Permo-Carboniferous and Devonian sediments and the granitic basement. The diameter of the transient crater was about 24 km. Erosion and weathering have removed most of the original crater fill and ejecta deposits, with the exception of remnants, preserved in the central uplift.  相似文献   

4.
Abstract— Surface and subsurface structural studies undertaken under the Haughton impact structure study (HISS) project indicate that the 23 Ma-old Haughton impact structure, (Devon Island, Canadian Arctic) consists of a central basin of uplifted strata, an inner zone of uplifted megablocks at 3.5–5.5 km radius, a complex, faulted annulus of megablocks at 5.5–7.0 km radius and an outer zone of downfaulted blocks. No evidence of a previously suggested structural multi-ring form was found. The geophysical studies suggest an original diameter of 24 km, slightly larger than previous estimates and the seismic data indicate considerably more faulting in the western portion than has been mapped from surface exposures. Detailed studies of the allochthonous breccia deposits found no major radial variations in lithology and shock levels. The only anomaly is the concentration of highly shocked, cobble-sized clasts in the central area coincident with the maximum gravity and magnetic anomalies. It is suggested that this local component is related to the highly shocked rocks of the central uplift and may have been shed from the uplift during late stage adjustments. There is no visible central topographic peak of uplifted bedrock at Haughton but studies of the post-impact Haughton Formation suggest that the center of the structure subsided 300–350 m soon after formation. Breccia studies also indicate the occurrence of shock-melted sediments, including shales, but no evidence of shock melted carbonates, the most common target lithology. This may be ascribed to the ease with which carbonates are volatilized by relatively moderate shock levels. The large amount of volatiles released on impact helped disperse the highly shocked products leading to the formation of a relatively cool clastic and polymict breccia deposit in the interior, as opposed to a coherent melt sheet. In this regard, the breccia deposit is somewhat analogous to the suevite deposits within the Ries crater. Sedimentological studies indicate that the Cretaceous-age Eureka Sound Formation was present at the time of impact and that the Haughton area has undergone as much as 200 m of erosion since the time of impact.  相似文献   

5.
Abstract— Clasts of deep-seated crystalline basement rocks in suevites of the Ries crater, Germany, were catalogued lithologically and classified with regard to their degree of shock metamorphism. The sample suite consisted of 806 clasts from 10 outcrops in fallout suevites and 447 clasts from drill cores encountering crater suevite in the crater interior. These clasts can be grouped into seven types of metamorphic and nine types of igneous rocks. One hundred forty-three clasts, representing these lithologies, were analyzed for major element bulk composition. The fallout suevite contains on average 4 vol% of crystalline basement clasts, 0.4 vol% of sedimentary rocks, 16 vol% of glass bodies (some of them aerodynamically shaped), and 79 vol% of groundmass. On average, 52% of all crystalline clasts are from metamorphic sources and 42% are of igneous origin. Using the shock classification of Stöffler (1974), 8% of all crystalline clasts appear unshocked (<10 Gpa), and 34, 30 and 27% of clasts are shocked to stages I (10–35 Gpa), II (35–45 GPa) and III (45–60 GPa), respectively. The bulk composition of suevite glasses is consistent with the modal proportions of crystalline rock types observed in the clast populations. This indicates that the glasses originate by shock-fusion of a similarly composed basement. The crater suevite contains the same crystalline rock types that occur in the fallout suevites. The bore hole “Nördlingen 1973” yields an average of 62 vol% metamorphic and 38 vol% igneous rocks. The crater suevite differs from fallout suevites by a higher clast/glass ratio, by preponderance (65–95%) of clasts shocked to stage I only, and by the absence of aerodynamically shaped glass bodies. The source of crystalline clasts and melt particles of suevites is a volume of rocks, located deep in the crystalline basement, to which the projectile transmittted most of its energy so that only rocks of the basement were shocked by pressures exceeding 10 GPa (deep-burst impact model). Fallout suevites were ejected, propelled by an expanding plume of vaporized rock, and withdrew preferentially from this volume melt and highly shocked clasts, leaving in the transient cavity the crater suevite with more clasts of modest shock levels and less melt.  相似文献   

6.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

7.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

8.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

9.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

10.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

11.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

12.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

13.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

14.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

15.
16.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

17.
Drill core FC77-1 on the flank of the central uplift, Flynn Creek impact structure, Tennessee, contains 175 m of impact breccia lying upon uplifted Lower Paleozoic carbonate target stratigraphy. Sedimentological analysis of this 175-m interval carbonate breccia shows that there are three distinct sedimentological units. In stratigraphic order, unit 1 (175–109 m) is an overall coarsening-upward section, whereas the overlying unit 2 (109–32 m) is overall fining-upward. Unit 3 (32–0 m) is a coarsening-upward sequence that is truncated at the top by postimpact erosion. Units 1 and 3 are interpreted as debris or rock avalanches into finer sedimentary deposits within intracrater marine waters, thus producing progressively coarser, coarsening-upward sequences. Unit 2 is interpreted to have formed by debris or rock avalanches into standing marine waters, thus forming sequential fining-upward deposits. Line-logging of clasts ranging from 5 mm to 1.6 m, and thin-section analysis of selected drill core samples (including clasts < 5 mm), both show that the Flynn Creek impact breccia consists almost entirely of dolostone clasts (90%), with minor components of cryptocrystalline melt clasts, chert and shale fragments, and clastic grains. Cryptocrystalline melt clasts, which appear isotropic in thin section, are in fact made of exceedingly fine quartz crystals that exhibit micro-Fourier transform infrared (FTIR) and micro-Raman spectra consistent with crystalline quartz. These cryptocrystalline melt clasts are the first melt clasts of any kind to be reported from Flynn Creek impact structure.  相似文献   

18.
Abstract— The suevite breccia of the Chicxulub impact crater, Yucatàn, Mexico, is more variable and complex in terms of composition and stratigraphy than suevites observed at other craters. Detailed studies (microscope, electron microprobe, SEM, XRF) have been carried out on a noncontinuous set of samples from the drill hole Yucatàn 6 (Y6) located 50 km SW from the center of the impact structure. Three subunits can be distinguished in the suevite: the upper unit is a fine‐grained carbonate‐rich suevite breccia with few shocked basement clasts, mostly altered melt fragments, and formerly melted carbonate material; the middle suevite is a coarse‐grained suevite with shocked basement clasts and altered silicate melt fragments; the lower suevite unit is composed of shocked basement and melt fragments and large evaporite clasts. The matrix of the suevite is not clastic but recrystallized and composed mainly of feldspar and pyroxene. The composition of the upper members of the suevite is dominated by the sedimentary cover of the Yucatàn target rock. With depth in well Y6, the amount of carbonate decreases and the proportion of evaporite and silicate basement rocks increases significantly. Even at the thin section scale, melt phases of different chemistry can be identified, showing that no widespread homogenization of the melt took place. The melt compositions also reflect the heterogeneity of the deep Yucatàn basement. Calcite with characteristic feathery texture indicates the existence of formerly pure carbonate melt. The proportion of carbonate to evaporite clasts is less than 5:1, except in the lower suevite where large evaporite clasts are present. This proportion constrains the amount of CO2 and SOX released by the impact event.  相似文献   

19.
Abstract– The 1.8 km‐diameter Xiuyan crater is an impact structure in northeastern China, exposed in a Proterozoic metamorphic rock complex. The major rocks of the crater are composed of granulite, hornblendite, gneiss, tremolite marble, and marble. The bottom at the center of the crater covers about 100 m thick lacustrine sediments underlain by 188 m thick crater‐fill breccia. A layer of polymict breccia composed of clasts of granulite, gneiss, hornblendite, and fragments of glass as well as clastic matrix, occurs near the base, in the depth interval from 260 to 295 m. An investigation in quartz from the polymict breccia in the crater‐fill units reveals abundant planar deformation features (PDFs). Quartz with multiple sets of PDFs is found in clasts of granulite that consist of mainly quartz and feldspar, and in fine‐grained matrix of the impact‐produced polymict breccia. A universal stage was used to measure the orientation of PDFs in 70 grains of quartz from five thin sections made from the clasts of granulite of polymict breccia recovered at the depth of 290 m. Forty‐four percent of the quartz grains contain three sets of PDFs, and another 40% contain two sets of PDFs. The most abundant PDFs are rhombohedron forms of , , and with frequency of 33.5, 22.3, and 9.6%, respectively. A predominant PDF form of in quartz suggests a shock pressure >20 GPa. The occurrence of PDFs in quartz from the polymict breccia provides crucial evidence for shock metamorphism of target rocks and confirms the impact origin of this crater, which thus appears to be the first confirmed impact crater in China.  相似文献   

20.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号