首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Measurements at Lowell Observatory of Titan in the b (472 nm) and y (551 nm) filters of the Strömgren photometric system at thirty four consecutive apparitions (282 nights) from 1971/72 to 2006 show a 10% sinusoidal variation that lags seasonal extremes by about 1/8 of a Titan year. The seasonal variations are asymmetric: the autumn lightcurve maxima of the northern and southern hemispheres differ significantly as do the spring lightcurve minima. Changes also occur from one Titan year to the next: Titan was ∼3% fainter in b and ∼1% fainter in y following the 2002 southern summer solstice than it was one Titan year earlier in 1973. These changes appear to be intrinsic to Titan's atmosphere and cannot be explained by instrumental effects and changing geometries. Orbital variations visible in recent Hubble Space Telescope images at 673 nm and Voyager orange images (590–640 nm) may have a small (0.002±0.001 mag) counterpart in the b, y photometric record (eastern elongation brighter, consistent with the Cassini near-infrared albedo map).  相似文献   

2.
The results of V-band polarimetric observations of the potentially hazardous near-Earth Asteroid (23187) 2000 PN9 at large phase angles are presented as well as its photometric observations in BVRI bands. Observations were made in March-April 2006 during its close approach to the Earth using the 1.82-m Asiago telescope (Italy) and the 0.7-m telescope at the Chuguevskaya Observational Station (Ukraine). We obtained polarimetric measurements at the phase angle of 115°, the largest phase angle ever observed in asteroid polarimetry. Our data show that the maximum value of the polarization phase curve reached 7.7% and occurred in the phase angle range of 90-115°. The measured values of linear polarization degree, BVRI colors and magnitude-phase dependence correspond to the S-type composition of this asteroid. Based on our observations the following characteristics of the Asteroid (23187) 2000 PN9 were obtained: a rotation period of 2.5325±0.0004 h, a lightcurve amplitude of 0.13 mag, an albedo of 0.24±0.06 and a diameter of 1.6±0.3 km.  相似文献   

3.
We report new radar observations of E-class Asteroid 64 Angelina and M-class Asteroid 69 Hesperia obtained with the Arecibo Observatory S-band radar (2480 MHz, 12.6 cm). Our measurements of Angelina’s radar bandwidth are consistent with reported diameters and poles. We find Angelina’s circular polarization ratio to be 0.8 ± 0.1, tied with 434 Hungaria for the highest value observed for main-belt asteroids and consistent with the high values observed for all E-class asteroids (Benner, L.A.M., Ostro, S.J., Magri, C., Nolan, M.C., Howell, E.S., Giorgini, J.D., Jurgens, R.F., Margot, J.L., Taylor, P.A., Busch, M.W., Shepard, M.K. [2008]. Icarus 198, 294-304; Shepard, M.K., Kressler, K.M., Clark, B.E., Ockert-Bell, M.E., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J. [2008b]. Icarus 195, 220-225). Our radar observations of 69 Hesperia, combined with lightcurve-based shape models, lead to a diameter estimate, Deff = 110 ± 15 km, approximately 20% smaller than the reported IRAS value. We estimate Hesperia to have a radar albedo of , consistent with a high-metal content. We therefore add 69 Hesperia to the Mm-class (high metal M) (Shepard, M.K., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M., Ostro, S.J., Harris, A.W., Warner, B.D., Stephens, R.D., Mueller, M. [2010]. Icarus 208, 221-237), bringing the total number of Mm-class objects to eight; this is 40% of all M-class asteroids observed by radar to date.  相似文献   

4.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   

5.
Images returned from the Deep Space 1 (DS-1) spacecraft during its encounter with Comet 19P/Borrelly are used to study its disk-integrated and disk-resolved photometry and its thermal properties. A disk-integrated phase function was constructed from a combination of DS-1 images and ground-based observations, giving a geometric albedo of 0.072±0.020 and a phase slope of 0.043 mag deg−1. The shape model of Borrelly [Kirk, R.L., Howington-Kraus, E., Soderblom, L.A., Giese, B., Oberst, J., 2004a. Icarus 167, 54-69] and the ephemerides of DS-1 were used to analyze the disk-resolved photometric data with Hapke's theoretical model. It was found that the surface of Borrelly displays large photometric heterogeneities in its photometric parameters. The single-scattering albedo, w, varies by a factor of 2.5 with an average of 0.057±0.009; the asymmetry factor, g, ranges from almost isotropic (−0.1) to strongly backscattering (−0.7) with an average of −0.43±0.07; the roughness parameter, , is less than 35° for most parts of surface but ranges up to 55° in some areas. Its average is 22°±5°. The observed 1-D temperature profile is modeled well by the standard thermal model (STM) for inactive regions and is found to be consistent with a very low thermal inertia. Water sublimation in the source region of the fan jet is observed to decrease the surface temperature from the STM predictions by 20-40 K. The source areas of two collimated jets could not be determined from either photometric model or thermal model. It is evident that the fan jet activity occurring on Borrelly's surface can be correlated to areas of relatively high albedo, weak backscattering, and high roughness.  相似文献   

6.
Photometric observations of Pluto in the BVR filter system were obtained in 1999 and in 1990-1993, and observations in the 0.89-μm methane absorption band were obtained in 2000. Our 1999 observations yield lightcurve amplitudes of 0.30 ± 0.01, 0.26 ± 0.01, and 0.21 ± 0.02 and geometric albedos of 0.44 ± 0.04, 0.52 ± 0.03, and 0.58 ± 0.02 in the B, V, and R filters, respectively. The low-albedo hemisphere of Pluto is slightly redder than the higher albedo hemisphere. A comparison of our results and those from previous epochs shows that the lightcurve of Pluto changes substantially through time. We developed a model that fully accounts for changes in the lightcurve caused by changes in the viewing geometry between the Earth, Pluto, and the Sun. We find that the observed changes in the amplitude of Pluto’s lightcurve can be explained by viewing geometry rather than by volatile transport. We also discovered a measurable decrease since 1992 of ∼0.03 magnitudes in the amplitude of Pluto’s lightcurve, as the model predicts. Pluto’s geometric albedo does not appear to be currently increasing, as our model predicts, although given the uncertainties in both the model and the measurements of geometric albedo, this result is not firm evidence for volatile transport. The maximum of methane-absorption lightcurve occurs near the minimum of the BVR lightcurves. This result suggests that methane is more abundant in the brightest regions of Pluto. Pluto’s phase coefficient exhibits a color dependence, ranging from 0.037 ± 0.01 in the B filter to 0.032 ± 0.01 in the R filter. Pluto’s phase curve is most like those of the bright, recently resurfaced satellites Triton and Europa. Although Pluto shows no strong evidence for volatile transport now (unlike Triton), it is important to continue to observe Pluto as it moves away from perihelion.  相似文献   

7.
BVI photometry of Triton and Proteus was derived from HST images taken in 1997. The VEGAMAG photometric technique was used. Triton was found to be brighter by a few percent than observations of the 1970's and 1980's, as expected due to the increasingly greater exposure of the bright south polar region. The leading side was also found to be brighter than the trailing side by 0.09 mag in all filters—50% larger than reported by Franz [Franz, O.G., 1981. Icarus 45, 602-606]. Contrary to our previous results [Pascu, D., et al., 1998. Bull. Am. Astron. Soc. 30, 1101], we found no episodic reddening. Our previous conclusions were based on an inaccurate early version of the Charge Transfer Efficiency (CTE) correction. The present result limits the start of the reddening event reported by Hicks and Buratti [Hicks, M.D., Buratti, B.J., 2004. Icarus 171, 210-218]. Our (B-V) result of 0.70±0.01 supports the global blueing described by Buratti et al. [Buratti, B.J., Goguen, J.D., Gibson, J., Mosher, J., 1994. Icarus 110, 303-314]. Our observations of July 1997 agree with the Voyager results and are among the bluest colors seen. We found Proteus somewhat brighter than earlier studies, but in good agreement with the recent value given by Karkoschka [Karkoschka, E., 2003. Icarus 162, 400-407]. A leading/trailing brightness asymmetry was detected for Proteus, with the leading side 0.1 mag brighter. The unique differences in action of the endogenic and exogenic processes on Triton and Proteus provides an opportunity to separate the endogenic and exogenic effects on Triton.  相似文献   

8.
We report on the results of a 6-month photometric study of the main-belt binary C-type Asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermione’s physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis, et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005. Icarus 178, 450-464]. A new effective diameter of 187 ± 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 + 0.5/−0.2 g cm−3. We infer a macroscopic porosity of ∼33 + 5/−20%.  相似文献   

9.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   

10.
Photoelectric intermediate-band b and y photometry of Uranus and Neptune obtained at each apparition since 1972, combined with broadband B and V photometry from 1950 to 1966, provide a record of planetary variability covering 2/3 of Uranus' 84-year orbital period and 1/3 of Neptune's 165-year orbital period. Almost all of the data were obtained with a dedicated 21-inch photometric telescope at Lowell Observatory. The data are quite homogeneous, with yearly uncertainties typically smaller than 0.01 mag (1%). The lightcurve of Uranus is sinusoidal with peaks at the solstices. The b amplitude slightly exceeds the expected 0.025 mag purely geometrical variation caused by oblateness as the planetary aspect changes, seen from Earth. The y amplitude is several times larger, indicating a strong equator-to-pole albedo gradient. The lightcurve is asymmetrical with respect to southern solstice, evidence of a temporal albedo variation. Neptune's post-1972 lightcurve exhibits a generally rising trend since 1972 interpreted by Sromovsky et al. [Sromovsky, L.A., Fry, P.M., Limaye, S.S., Baines, K.H., 2003. Icarus 163, 256-261] as a lagged sinusoidal seasonal variation. However, the 1950-1966 lightcurve segments are much fainter than expected, missing the proposed seasonal sinusoid by 0.1-0.2 mag. A major unknown component is therefore needed to explain Neptune's long-term variation. The apparent relationship between Neptune's brightness variation and the 11-year solar cycle seen in cycles 21-22 (1972-1996) has apparently now faded away. Further interpretation of the data in this paper will be found in a companion paper by Hammel and Lockwood [Hammel, H.B., Lockwood, G.W., 2005. Icarus. Submitted for publication].  相似文献   

11.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

12.
We present results of a ground-based observational study of the Hayabusa mission target near-Earth Asteroid (25143) Itokawa. Our data consist of BVRI-filter CCD photometry and low resolution CCD spectroscopy, from which the asteroid's rotation period, axial ratio, broadband colors, and taxonomic classification are derived. Analysis of the R-filter lightcurve data shows a synodic rotation period of 12.12±0.02 h, consistent with results from other observers. We observed a maximum peak-to-peak amplitude of 1.05 magnitudes, which—depending on the taxonomic class assumed when correcting for phase angle effects—implies a minimum axial ratio of 2.14. The shape of the rotation lightcurves varies considerably between data sets due to the changing viewing geometry. The lightcurve data from this study has been included in the shape model analysis of Kaasalainen et al. (2003 Astron. Astrophys, 405, L29-L32) and the Hapke analysis of Lederer et al. (2005 Icarus 173,153-165). Color variations were also observed, with the interpolated color indices at lightcurve midpoint being: (B-V)=0.94±0.05, (V-R)=0.40±0.06, and (V-I)=0.74±0.07. Our low resolution Palomar spectra from March 2001 covered a wavelength range of 0.3-1.0 μm. We measured a spectral slope of 9.3±0.3%/100 nm between 0.55-0.70 μm and a deep 1 μm absorption (equivalent ECAS color: w-x=−0.111±0.003, v-x=0.031±0.003). Comparison of our spectra with published ECAS data from Zellner et al. (1985 Icarus 61, 355-416) indicates that this object is most likely of Q- or S-type, similar to ordinary chondrite meteorites. Our data are more consistent with a Q-type body when both the spectroscopic data and the available BVRI photometry are taken into account.  相似文献   

13.
The sidereal period of Ceres is refined from 9.075 h to 9.074170±0.000002, making use of recent and historical lightcurves spanning almost 50 years. An observed increase in the amplitude of the lightcurve with solar phase angle is consistent with bright, discrete albedo features contributing a greater fraction of light as the defect of illumination increases. Observations near the same phase angle over this time span show no evidence of changes that would indicate active surface processes.  相似文献   

14.
We present the first observational measurement of the orbit and size distribution of small Solar System objects whose orbits are wholly interior to the Earth's (Inner Earth Objects, IEOs, with aphelion <0.983 AU). We show that we are able to model the detections of near-Earth objects (NEO) by the Catalina Sky Survey (CSS) using a detailed parameterization of the CSS survey cadence and detection efficiencies as implemented within the Jedicke et al. [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J.M., Bottke, W.F., 2003. Icarus 161, 17-33] survey simulator and utilizing the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] model of the NEO population's size and orbit distribution. We then show that the CSS detections of 4 IEOs are consistent with the Bottke et al. [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] IEO model. Observational selection effects for the IEOs discovered by the CSS were then determined using the survey simulator in order to calculate the corrected number and H distribution of the IEOs. The actual number of IEOs with H<18 (21) is 36±26 (530±240) and the slope of the H magnitude distribution (∝10αH) for the IEOs is . The slope is consistent with previous measurements for the NEO population of αNEO=0.35±0.02 [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433] and αNEO=0.39±0.013 [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311]. Based on the agreement between the predicted and observed IEO orbit and absolute magnitude distributions there is no indication of any non-gravitational effects (e.g. Yarkovsky, tidal disruption) affecting the known IEO population.  相似文献   

15.
The Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) can be used to obtain direct determination of the sizes and the albedos of asteroids. We present results of the first attempt to carry out interferometric observations of asteroids with the Mid Infrared Interferometric Instrument (MIDI) at the VLTI. Our target was 1459 Magnya. This is the only V-type asteroid known to exist in the outer main-belt, and its IRAS-albedo turns out to be rather low for an object of this taxonomic class. Interferometric fringes were not detected, very likely due to the fact that the flux emitted by the asteroid was lower than expected and below the MIDI threshold for fringe detection. However, by fitting the Standard Thermal Model to the N-band infrared flux measured by MIDI in photometric mode and to the visible absolute magnitude, obtained from quasi-simultaneous B- and V-band photometric observations, we have derived a geometric visible albedo of 0.37±0.06 and an effective diameter of 17±1 km. This new estimate of the albedo differs from that previously obtained by IRAS and is more consistent with the V-type taxonomic classification of 1459 Magnya.  相似文献   

16.
We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b?1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (VR)=0.39±0.06 and (BV)=0.73±0.06 (). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ∼11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., Meech, K.J., 2005. Icarus 175, 194-214]—taken just 2-3 weeks before the current data set—and we show that a rotation period of just over 11 h works extremely well for the combined data set. The resulting best-fit period is 11.083±0.003 h, consistent with the Fernández et al. value.  相似文献   

17.
We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite.  相似文献   

18.
A photometric model of (433) Eros at wavelengths from 450 to 1050 nm is constructed using the combination of the images from the multispectral imager (MSI) obtained during the one-year long orbital phase of the NEAR mission, ground-based lightcurves from earlier observations, and our theoretical forward modeling simulations coupled with the NEAR shape model. The single scattering albedo is found to be 0.33±0.03 at 550 nm, which is smaller than past findings by 30%. The amplitude and width of the opposition effect are 1.4±0.1 and 0.010±0.004 from ground based lightcurves. It is confirmed that the asymmetry factor of the single-particle phase function and the surface roughness parameter do not depend on wavelength from 450 to 1050 nm, and their values are estimated to be −0.25±0.02 and 28°±3°, respectively, comparable with the earlier measurements from the NEAR NIS data. The geometric albedo and the Bond albedo at 550 nm are calculated to be 0.23 and 0.093, respectively, which make Eros less reflective than previous models, but still slightly more reflective than average S-type asteroids. The lower albedos of Eros are more consistent with our forward modeling simulations, as well as with its spectrum. Eros is a typical S-type asteroid like (951) Gaspra and (243) Ida, and has similar surface regolith properties. Combining the single-scattering albedo with the olivine composition of ordinary chondrites, taking into account space weathering darkening, we constrain the grain size of the regolith particles on Eros to a range of 50 to 100 μm.  相似文献   

19.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.  相似文献   

20.
C. Ferrari  S. Brooks  C. Leyrat  L. Spilker 《Icarus》2009,199(1):145-153
The CIRS infrared spectrometer onboard the Cassini spacecraft has scanned Saturn's A ring azimuthally from several viewing angles since its orbit insertion in 2004. A quadrupolar asymmetry has been detected in this ring at spacecraft elevations ranging between 16° to 37°. Its fractional amplitude decreases from 22% to 8% from 20° to 37° elevations. The patterns observed in two almost complete azimuthal scans at elevations 20° and 36° strongly favor the self-gravity wakes as the origin of the asymmetry. The elliptical, infinite cylinder model of Hedman et al. [Hedman, M.M., Nicholson, P.D., Salo, H., Wallis, B.D., Buratti, B.J., Baines, K.H., Brown, R.H., Clark, R.N., 2007. Astron. J. 133, 2624-2629] can reproduce the CIRS observations well. Such wakes are found to have an average height-to-spacing ratio H/λ=0.1607±0.0002, a width-over-spacing W/λ=0.3833±0.0008. Gaps between wakes, which are filled with particles, have an optical depth τG=0.1231±0.0005. The wakes mean pitch angle ΦW is 70.70°±0.07°, relative to the radial direction. The comparison of ground-based visible data with CIRS observations constrains the A ring to be a monolayer. For a surface mass density of 40 g cm−2 [Tiscarino, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34], the expected spacing of wakes is λ≈60 m. Their height and width would then be H≈10 m and W≈24 m, values that match the maximum size of particles in this ring as determined from ground-based stellar occultations [French, R.G., Nicholson, P.D., 2000. Icarus 145, 502-523].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号