首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   

2.
The formation of CO2 ice clouds in the upper atmosphere of Mars has been suggested in the past on the basis of a few temperature profiles exhibiting portions colder than CO2 frost point. However, the corresponding clouds were never observed. In this paper, we discuss the detection of the highest clouds ever observed on Mars by the SPICAM ultraviolet spectrometer on board Mars Express spacecraft. Analyzing stellar occultations, we detected several mesospheric detached layers at about 100 km in the southern winter subtropical latitudes, and found that clouds formed where simultaneous temperature measurements indicated that CO2 was highly supersaturated and probably condensing. Further analysis of the spectra reveals a cloud opacity in the subvisible range and ice crystals smaller than 100 nm in radius. These layers are therefore similar in nature as the noctilucent clouds which appear on Earth in the polar mesosphere. We interpret these phenomena as CO2 ice clouds forming inside supersaturated pockets of air created by upward propagating thermal waves. This detection of clouds in such an ultrararefied and supercold atmosphere raises important questions about the martian middle-atmosphere dynamics and microphysics. In particular, the presence of condensates at such high altitudes begs the question of the origin of the condensation nuclei.  相似文献   

3.
N. Thomas  C.J. Hansen 《Icarus》2010,205(1):296-310
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s−1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s−1) and that a ground-hugging flow process (a sort of “cryo-fumarole”) may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230°, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280°, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation.  相似文献   

4.
During the past 4 Mars years, Mars Orbiter Camera imaging capabilities have been used to document occurrence of seasonal patches of frost at latitudes as low as 33° S, and even 24° S. Monitoring reveals bright patches on pole-facing slopes; these appear in early southern winter and disappear in mid winter. The frost forms annually. Thermal Emission Spectrometer and daytime Thermal Emission Imaging System observations show surface temperatures on and near pole facing slopes reach the condensation temperature of CO2, indicating the patches consist of carbon dioxide rather than water frost. For several months, temperatures on pole-facing crater walls are so low that even carbon dioxide condenses on them, although the slopes are illuminated by the Sun every day. Thermal model calculations show slopes accumulate a several centimeter thick layer of CO2 frost. The frost becomes visible only months after it has begun to form, and has an orientational preference which is due to illumination bias at the time of observation. H2O condenses at higher temperatures and water frost must therefore also be present. Potential opportunities to observe seasonal water frost at low latitudes are also described.  相似文献   

5.
Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars’ Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.  相似文献   

6.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

7.
Polar regions on Mars are the most suitable places to observe water vapor daily variability because in any observation crossing the Pole we can observe very different local time and because the poles are considered to be the main permanent and seasonal water reservoir of the planet. We report on a daily variability of water vapor in the South Pole Region (SPR), observed by OMEGA/Mars Express during the south spring-summer period (Ls∼250°-270°) outside the CO2 ice cap, that has never been observed before by other instruments. We have been able to estimate an increase of few precipitable microns during the day. A possible scenario includes the presence of regolith, or another component that could gather water from the atmosphere, adsorbing the water into the surface during the night time and desorbing it as soon as the Sun reaches sufficient height to heat the ground. This hypothesis is even more plausible considering the presence of observed local enhancements in the morning sections associated with the illumination of the Sun and the total absence in the data for water ice.  相似文献   

8.
We used Mars Express HRSC and OMEGA data to investigate mesospheric cloud features observed in the equatorial belt of Mars from December 2007 until early March 2008. This period corresponds to early northern spring of Martian year 29. The reflection peak at 4.26 μm in OMEGA data identifies the clouds as CO2 ice clouds. HRSC observed the clouds together with OMEGA in five orbits. Cloud features are most prominent in the shortwave HRSC colour channels with wavelength centers at 440 and 530 nm, but rarely visible in all other channels. In the period of Ls 0-36°, OMEGA and HRSC together detected mesospheric CO2 ice clouds in 40 orbits. They occur in a latitude belt of ±20° around the equator and at longitudes between 240°E (Tharsis) in the West and 30°E (Sinus Meridiani) in the East. The clouds were observed between 3 and 5 p.m. local time with mainly ripple-like to filamentary cloud forms. The viewing angles of the HRSC blue and green colour channels differ by 6.6° and the resulting parallax can be used to directly measure cloud heights by means of ray intersection. 17 HRSC data takes were found to exhibit clouds with heights from 66 to 83 km with an accuracy of 1-2 km. The pushbroom imaging technique also yields a time delay for the two observations in the order of 5-15 s close to periapsis, and therefore time-related cloud movements can be detected. A method was developed to determine the across-track cloud displacements, which can directly be translated to wind velocities. Zonal cloud movements could be measured in 13 cases and were oriented from East to West. Related wind speeds range between 60 and 93 m/s with an accuracy of 10-13 m/s.  相似文献   

9.
There is a significant progress in the observational data relevant to Mars photochemistry in the current decade. These data are not covered by and sometimes disagree with the published models. Therefore we consider three types of models for Mars photochemistry. A steady-state model for global-mean conditions is currently the only way to calculate the abundances of long living species (H2, O2, and CO). However, our model does not fit the observed CO abundance using gas-phase chemistry and reasonable values of heterogeneous loss of odd hydrogen on the water ice aerosol. The second type of the calculated models is steady-state models for local conditions. The MGS/TES data on temperature profiles, H2O, and dust are input parameters for these models. The calculations have been made for nine seasonal points spread over the martian year and for twelve latitudes with a step of 10° for each season. The only adopted heterogeneous reaction is a weak loss of H2O2 on water ice with probability of 5×10−4. The results are in good agreement with the recent observations of the O2 dayglow at 1.27 μm and the O3 and H2O2 abundances. Global maps of the seasonal and latitudinal behavior of these species have been made. The third type of models is a time-dependent model for local conditions. These models show that odd hydrogen quickly converts to H2O2 at the nighttime and the chemistry is switched off while the association of O, the heterogeneous loss of H2O2, and eddy diffusion continue. This requires significant changes in the global-mean and local steady-state models discussed above, and these changes have been properly done. The calculated diurnal variations of Mars photochemistry are discussed. The martian photochemistry at low and middle latitudes is significantly different in the aphelion period at LS=10°-130° from that in the remaining part of the year.  相似文献   

10.
H.M. Böttger  S.R. Lewis  F. Forget 《Icarus》2005,177(1):174-189
This paper describes General Circulation Model (GCM) simulations of the martian water cycle focusing on the effects of an adsorbing regolith. We describe the 10-layer regolith model used in this study which has been adapted from the 1-D model developed by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. Even with a 30-min timestep and taking into account the effect of surface water ice, our fully implicit scheme compares well with the results obtained by Zent, A.P., Haberle, R.M., Houben, H.C., Jakosky, B.M. [1993. A coupled subsurface-boundary layer model of water on Mars. J. Geophys. Res. 98 (E2), 3319-3337, February]. This means, however, that the regolith is not able to reproduce the diurnal variations in column water vapour abundance of up to a factor of 2-3 as seen in some observations, with only about 10% of the atmospheric water vapour column exchanging with the subsurface on a daily basis. In 3-D simulations we find that the regolith adsorbs water preferentially in high latitudes. This is especially true in the northern hemisphere, where perennial subsurface water ice builds up poleward of 60° N at depths which are comparable to the Odyssey observations. Much less ice forms in the southern high latitudes, which suggests that the water ice currently present in the martian subsurface is not stable under present conditions and is slowly subliming and being deposited in the northern hemisphere. When initialising the model with an Odyssey-like subsurface water ice distribution the model is capable of forcing the simulated water cycle from an arbitrary state close to the Mars Global Surveyor Thermal Emission Spectrometer observations. Without the actions of the adsorbing regolith the equilibrated water cycle is found to be a factor of 2-4 too wet. The process by which this occurs is by adsorption of water during northern hemisphere summer in northern mid and high latitudes where it remains locked in until northern spring when the seasonal CO2 ice cap retreats. At this time the water diffuses out of the regolith in response to increased temperature and is returned to the residual water ice cap by eddie transport.  相似文献   

11.
New results from a 1 Gyr integration of the martian orbit are presented along with a seasonally resolved energy balance climate model employed to illuminate the gross characteristics of the long-term atmospheric pressure evolution. We present a new analysis of the statistical variation of the martian obliquity and precession prior to and subsequent to the formation of the Tharsis uplift, and explore the long term effects on the martian climate. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, Afrost, and frost emissivity, ?frost. Using our model with values of Afrost=0.67 and ?frost=0.55, matched to the NASA Ames General Circulation Model (GCM) results (Haberle et al., 1993, J. Geophys. Res. 98, 3093-3123, and Haberle et al., 2003, Icarus 161, 66-89), we find that permanent caps only form at low obliquities (<13°), suggesting that any permanent deposits on the surface of Mars today may be residuals left over from a period of very low obliquity, or are the result of mechanisms not represented by this model. Thus, contrary to expectations, the martian atmospheric pressure is remarkable static over time, and decreases both at high and low obliquity. Also, from our one billion year orbital model, we present new results on the fraction of time Mars is expected to experience periods of low obliquity and high obliquity.  相似文献   

12.
The Mars Orbiter Camera onboard the Mars Global Surveyor has obtained several images of polygonal features in the southern polar region. In images taken during the end of the southern spring, when the surrounding surface is free of the seasonal frost, CO2 ice still appears to be present within the polygonal troughs. In Earth's polar regions, polygons such as these are indicative of water ice in the ground below. We analyzed the seasonal evolution of the thermal state and the CO2 content of these features. Our 2-D model includes condensation and sublimation of the CO2 ice, a self consistent treatment of the variations of the thermal properties of the regolith, and the seasonal variations of the local atmospheric pressure which we take from the results of a general circulation model. We find that the residence time of seasonal CO2 ice in troughs depends not only on atmospheric opacity and albedo of the CO2 ice, but also and most significantly on the distribution of water ice in the regolith. Optical properties of the atmosphere and surface CO2 ice can be independently obtained from observations. To date this is not true about the distribution of water ice below the surface. Our analysis quantifies the dependence of the seasonal cycle of the CO2 ice within the troughs on the assumed distribution of the water ice below the surface. We show that presence of water ice in the ground at a depth smaller than the depth of the troughs reduces winter condensation rate of CO2 ice. This is due to higher heat flux conducted from the water ice rich regolith toward the facets of the troughs.  相似文献   

13.
Enigmatic surface features, known as ‘spiders’, found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO2 slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning of CO2 slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that outbursts happen very early in spring.  相似文献   

14.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

15.
F. Altieri  L. Zasova  G. Bellucci  B. Gondet 《Icarus》2009,204(2):499-511
We present a method to derive the 2D maps of the O2 (a1Δg) airglow emission at 1.27 μm from the OMEGA/MEx nadir observations. The OMEGA imaging capabilities allow monitoring the 2D distribution, daily and seasonal variation of the O2 emission intensities with a detection limit of 4 MR. The highest values, of the order of ∼31 MR, are found on the south pole for 11 h < LT < 13 h, during the early spring (186° < Ls < 192°) of martian year (MY) 27, according to the Mars Year numbering scheme of Clancy et al. [Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. 108. doi: 10.1029/2003JE002058]. In the polar regions the day-by-day variability, associated with polar vortex turbulences, is obtained of the order of 30-50% as predicted by the model [Lefévre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004. doi: 10.1029/2004JE002268] and found by SPICAM [Perrier, S., Bertaux, J.-L., Lebonnois, S., Korablev, O., Fedorova, A., 2006. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res. 111, E09S06. doi: 10.1029/2006JE002681]. In the considered set of data a maximum of the O2 emission is observed between 11 h and 15 h LT in the latitude range 70-85° during early spring on both hemispheres, while for the southern autumn-winter season a maximum is found between 50° and 60° in the southern hemisphere for MY28. Increase of intensity of the O2 emission observed from Ls 130° to 160° at southern high latitudes may be explained by increase of solar illumination conditions in the maps acquired during the considered period.Atmospheric waves crossing the terminator on the southern polar regions are observed for the first time during the MY28 early spring. The spatial scale of the waves ranges from 100 to 130 km, and the intensity fluctuations are of the order of 4MR.This study confirms the high potentiality of O2 (a1Δg) day glow as a passive tracer of the martian atmosphere dynamics at high latitudes.  相似文献   

16.
The O2 dayglow at 1.27 μm is formed by high-altitude ozone on Mars and is a sensitive tracer of Mars photochemistry. Mapping of this dayglow using the IRTF/CSHELL long-slit spectrograph requires the extraction of weak emission lines against a strong continuum of the reflected solar light. Some new tools are suggested to improve the data processing. The observed O2 dayglow intensities at LS=67°, 112°, 148°, and 173° show a decrease from late spring (aphelion) to fall equinox by a factor of ≈5 at low latitudes (±30°). This decrease agrees with that predicted by a model of Clancy and Nair (1996, J. Geophys. Res. 101 (12) 12785-12790), although the dayglow intensities are weaker than those based on that model. The measured dayglow variations with latitude are rather low at LS=67°, 112°, and 148° and unexpectedly high at 173°. The dayglow intensity peaks near noon and is smaller at 9:00 and 16:30 LT by a factor of 2. Some data on the ozone profile near aphelion are obtained from a combination of the dayglow and ozone observations. It is hardly possible to detect the O2 night airglow at 1.27 μm on Mars using the existing ground-based and on-orbit instruments. The O2 dayglow intensity as a function of latitude and season from aphelion to fall equinox has been obtained. Our goal is to extend this distribution to the full martian year and get a database for Mars photochemistry to complement the MGS/TES observations of water vapor, atmospheric temperature, and dust and ice aerosol.  相似文献   

17.
We report high-spectral-resolution (λ/δλ = 800-2300) near-infrared mapping observations of Mars at Ls = 130° (April 1999), which were obtained by drift-scanning the cryogenic long-slit spectrometer at the KPNO 2.2-m telescope across the disk. Data were reformatted into calibrated spectral image cubes (x,y,λ) spanning 2.19 to 4.12 μm, which distinguish atmospheric CO2 features, solar lines, and surface and aerosol features. Maps of relative band depth between 3.0 and 3.5 μm trace water ice clouds and show the diurnal evolution of features in the persistent northern summer aphelion cloud belt, which was mapped contemporaneously but at fixed local time by the Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES). Cloud optical depth, particle sizes, and ice aerosol content were estimated using a two-stream, single-layer scattering model, with Mie coefficients derived from recently published ice optical constants, followed by a linear spectral deconvolution process. A comparison of data and model spectra shows evaporating nighttime clouds in the morning followed by afternoon growth of a prominent orographic cloud feature on the west flank of Elysium Mons. Cloud optical depth at 3.2 μm evolved to 0.28 ± 0.13 and ice aerosol column abundance to 0.9 ± 0.3 pr μm in the afternoon. Column abundances as large as 0.17 pr μm were retrieved in nonorographic clouds within the aphelion cloud band around midday. These clouds exhibit a modest decline in optical depth during the afternoon. Results show that ice particle radii from <2 μm to >4 μm exist in both cloud types. However, large particles dominate the spectra, consistent with recent MGS/TES emission phase function measurements of aphelion cloud aerosol properties.  相似文献   

18.
Our ground-based measurements of martian atmospheric water vapor, made throughout Ls=34° to 249°, 24 September 1998 to 23 November 1999, during Mars year 24 (MY 24), show changes in Mars' humidity on hourly, daily, and seasonal timescales. We made concomitant measurement of nearby CO2 bands, and when possible, results were corrected for aerosol extinction using aerosol optical depths derived from our own CO2 analysis. Where there is spatial and temporal overlap, similar results are obtained for water vapor abundances and aerosol opacities as those observed from the Thermal Emission Spectrometer on Mars Global Surveyor. In addition some further discussion of our published earlier water vapor measurements (1991-1995) is included. Six results from this data set are: (1) the measured aerosol opacity in Mars atmosphere was variable but not greater than τ=1, with almost no clear atmosphere being observed, (2) measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a diurnal pattern with highest abundances at mid-day and low abundance in very early morning and late afternoon for some but not all measurements, (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends seen by instrumentation on the Mars Atmospheric Water Detector on the Viking Orbiters and by the Thermal Emission Spectrometer on Mars Global Surveyor, (4) there is a slight longitudinal correlation with the ground-ice observed by the Gamma Ray Spectrometer on Mars Odyssey, (5) there is evidence of the Low Southern Latitude Summer Minimum in our water vapor measurements but our data set for southern summer is limited, and (6) MY 24 appears to be wetter than MY 22 and MY 23.  相似文献   

19.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4.  相似文献   

20.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号