首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

2.
We compare photospheric line-of-sight magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) instrument with observations from the 150-foot Solar Tower at Mt. Wilson Observatory (MWO), the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). We find very good agreement between VSM and the other data sources for both disk-averaged flux densities and pixel-by-pixel measurements. We show that the VSM mean flux density time series is of consistently high signal-to-noise ratio with no significant zero offsets. We discuss in detail some of the factors ?C spatial resolution, flux dependence, and position on the solar disk ?C affecting the determination of scaling between VSM and SOHO/MDI or SDO/HMI magnetograms. The VSM flux densities agree well with spatially smoothed data from MDI and HMI, although the scaling factors show a clear dependence on flux density. The factor to convert VSM to HMI increases with increasing flux density (from ??1 to ??1.5). The nonlinearity is smaller for the VSM vs. SOHO/MDI scaling factor (from ??1 to ??1.2).  相似文献   

3.
Magnetohydrodynamic turbulence is thought to be responsible for producing complex, multiscale magnetic field distributions in solar active regions. Here we explore the multiscale properties of a number of evolving active regions using magnetograms from the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The multifractal spectrum was obtained by using a modified box-counting method to study the relationship between magnetic-field multifractality and region evolution and activity. The initial emergence of each active region was found to be accompanied by characteristic changes in the multifractal spectrum. Specifically, the range of multifractal structures (D div) was found to increase during emergence, as was their significance or support (C div). Following this, a decrease in the range in multifractal structures occurred as the regions evolved to become large-scale, coherent structures. From the small sample considered, evidence was found for a direct relationship between the multifractal properties of the flaring regions and their flaring rate.  相似文献   

4.
Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.  相似文献   

5.
We compare line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The line-of-sight magnetic signal inferred from the calibrated MDI data is greater than that derived from the HMI data by a factor of 1.40. This factor varies somewhat with center-to-limb distance. An upper bound to the random noise for the 1′′ resolution HMI 720-second magnetograms is 6.3 Mx?cm?2, and 10.2 Mx?cm?2 for the 45-second magnetograms. Virtually no p-mode leakage is seen in the HMI magnetograms, but it is significant in the MDI magnetograms. 12-hour and 24-hour periodicities are detected in strong fields in the HMI magnetograms. The newly calibrated MDI full-disk magnetograms have been corrected for the zero-point offset and underestimation of the flux density. The noise is 26.4 Mx?cm?2 for the MDI one-minute full-disk magnetograms and 16.2 Mx?cm?2 for the five-minute full-disk magnetograms observed with four-arcsecond resolution. The variation of the noise over the Sun’s disk found in MDI magnetograms is likely due to the different optical distortions in the left- and right-circular analyzers, which allows the granulation and p-mode to leak in as noise. Saturation sometimes seen in sunspot umbrae in MDI magnetograms is caused by the low intensity and the limitation of the onboard computation. The noise in the HMI and MDI line-of-sight magnetic-field synoptic charts appears to be fairly uniform over the entire map. The noise is 2.3 Mx?cm?2 for HMI charts and 5.0 Mx?cm?2 for MDI charts. No evident periodicity is found in the HMI synoptic charts.  相似文献   

6.
In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996?–?2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010?–?2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT–AIA and MDI–HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6?–?5.8 (5.0?–?8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the tool is applicable to non-recurrent GMSs and FDs caused by nearly central eruptions from active regions, provided that the southern component of the interplanetary magnetic field near the Earth is predominantly negative, which is not predicted by this tool.  相似文献   

7.
The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semianalytic and numeric equilibria and applied to vector magnetograms from Hinode and ground-based observations. Recently we implemented a new version which takes into account measurement errors in photospheric vector magnetograms. Photospheric field measurements are often affected by measurement errors and finite nonmagnetic forces inconsistent for use as a boundary for a force-free field in the corona. To deal with these uncertainties, we developed two improvements: i) preprocessing of the surface measurements to make them compatible with a force-free field, and ii) new code which keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which must be optimized for use with data from SDO/HMI. In this work we describe the corresponding analysis method and evaluate the force-free equilibria by how well force-freeness and solenoidal conditions are fulfilled, by the angle between magnetic field and electric current, and by comparing projections of magnetic field lines with coronal images from the Atmospheric Imaging Assembly (SDO/AIA). We also compute the available free magnetic energy and discuss the potential influence of control parameters.  相似文献   

8.
We present a new sigmoid catalog covering the duration of the Hinode mission and the Solar Dynamics Observatory (SDO) until the end of 2012. The catalog consists of 72 mostly long-lasting sigmoids. We collect and make available all X-ray and EUV data from Hinode, SDO, and the Solar TErrestrial RElations Observatory (STEREO), and we determine the sigmoid lifetimes, sizes, and aspect ratios. We also collect the line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) for SDO or the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) to measure flux versus time for the lifetime of each region. We determine that the development of a sigmoidal shape and eruptive activity is more strongly correlated with flux cancelation than with emergence. We find that the eruptive properties of the regions correlate well with the maximum flux, largest change, and net change in flux in the regions. These results have implications for constraining future flux-rope models of ARs and gaining insight into their evolutionary properties.  相似文献   

9.
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the magnetic field in the solar photosphere. It observes the full solar disk in the Fe?i absorption line at 6173 Å. We use the output of a high-resolution, 3D, time-dependent, radiation-hydrodynamic simulation based on the CO 5 BOLD code to calculate profiles F(??,x,y,t) for the Fe?i 6173 Å line. The emerging profiles F(??,x,y,t) are multiplied by a representative set of HMI filter-transmission profiles R i (??, 1??i??6) and filtergrams I i (x,y,t; 1??i??6) are constructed for six wavelengths. Doppler velocities V HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross-correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni?i line at 6768 Å. The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.  相似文献   

10.
Multiple recent investigations of solar magnetic-field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17?733 magnetograms in total) observed by SOHO’s Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i)?a?widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii)?a?lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately, for major solar-flare prediction.  相似文献   

11.
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.  相似文献   

12.
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.  相似文献   

13.
We present a comparison of the Solar Dynamics Observatory (SDO) analysis of NOAA Active Region (AR) 11158 and numerical simulations of flux-tube emergence, aiming to investigate the formation process of this flare-productive AR. First, we use SDO/Helioseismic and Magnetic Imager (HMI) magnetograms to investigate the photospheric evolution and Atmospheric Imaging Assembly (AIA) data to analyze the relevant coronal structures. Key features of this quadrupolar region are a long sheared polarity inversion line (PIL) in the central δ-sunspots and a coronal arcade above the PIL. We find that these features are responsible for the production of intense flares, including an X2.2-class event. Based on the observations, we then propose two possible models for the creation of AR 11158 and conduct flux-emergence simulations of the two cases to reproduce this AR. Case 1 is the emergence of a single flux tube, which is split into two in the convection zone and emerges at two locations, while Case 2 is the emergence of two isolated but neighboring tubes. We find that, in Case 1, a sheared PIL and a coronal arcade are created in the middle of the region, which agrees with the AR 11158 observation. However, Case 2 never builds a clear PIL, which deviates from the observation. Therefore, we conclude that the flare-productive AR 11158 is, between the two cases, more likely to be created from a single split emerging flux than from two independent flux bundles.  相似文献   

14.
Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three?to?five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.  相似文献   

15.
Observational data on the Ni I 6768 Å line profile variations during the impulsive and post-impulsive phases of the July 18, 2002 while light flare (WLF) in the kernel of WLF emission and in other flare kernels are presented. The line profiles at the sites of intense photospheric motions in active regions are also studied. The effect of the observed Ni I 6768 Å line profile variations on the SOHO/MDI magnetic field measurements is estimated. The following conclusions have been reached. (1) The thermodynamic structure of the photo-spheric layers changes significantly during the flare. As a result, the Ni I line profile changes, particularly at the site of WLF emission. At this time, the line depth decreases significantly, but the line does not show any emission reversal. Subsequently, a relatively slow return to the conditions of an undisturbed photosphere is observed. (2) The technique of SOHO/MDI magnetic field measurements is insensitive to such line variations. Therefore, the detected variations during the flare did not result in any noticeable errors in the MDI longitudinal magnetic field measurements. (3) The line profile is broadened, shifted as a whole, and asymmetric at the sites of active regions where intense photospheric motions appear. In the MDI measurements, such changes in the profile lead to an underestimation of the magnetic field by approximately 10% if the line-of-sight velocity of the photo-spheric ejection is about 1.6 km s?1.  相似文献   

16.
Using SOHO/MDI and SOHO/EIT data we study properties and dynamics of interconnected active regions, and the relations between the photospheric magnetic fields and coronal structures in active longitudes during the beginning of solar cycle 23. The emergence of new magnetic flux results in appearance of new interconnecting loops. The existence of stable coronal structures strongly depends on the photospheric magnetic fluxes and their variations. We present some initial results for a complex of solar activity observed in April 1997, and discuss the role of reconnection in the formation of the interconnected loops and coronal holes.  相似文献   

17.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

18.
Since the Solar Dynamics Observatory (SDO) began recording ≈?1 TB of data per day, there has been an increased need to automatically extract features and events for further analysis. Here we compare the overall detection performance, correlations between extracted properties, and usability for feature tracking of four solar feature-detection algorithms: the Solar Monitor Active Region Tracker (SMART) detects active regions in line-of-sight magnetograms; the Automated Solar Activity Prediction code (ASAP) detects sunspots and pores in white-light continuum images; the Sunspot Tracking And Recognition Algorithm (STARA) detects sunspots in white-light continuum images; the Spatial Possibilistic Clustering Algorithm (SPoCA) automatically segments solar EUV images into active regions (AR), coronal holes (CH), and quiet Sun (QS). One month of data from the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) and SOHO/Extreme Ultraviolet Imaging Telescope (EIT) instruments during 12 May?–?23 June 2003 is analysed. The overall detection performance of each algorithm is benchmarked against National Oceanic and Atmospheric Administration (NOAA) and Solar Influences Data Analysis Center (SIDC) catalogues using various feature properties such as total sunspot area, which shows good agreement, and the number of features detected, which shows poor agreement. Principal Component Analysis indicates a clear distinction between photospheric properties, which are highly correlated to the first component and account for 52.86% of variability in the data set, and coronal properties, which are moderately correlated to both the first and second principal components. Finally, case studies of NOAA 10377 and 10365 are conducted to determine algorithm stability for tracking the evolution of individual features. We find that magnetic flux and total sunspot area are the best indicators of active-region emergence. Additionally, for NOAA 10365, it is shown that the onset of flaring occurs during both periods of magnetic-flux emergence and complexity development.  相似文献   

19.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

20.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号