首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Richard Woo 《Solar physics》2005,231(1-2):71-85
The solar magnetic field is key to a detailed understanding of the Sun's atmosphere and its transition to the solar wind. However, the lack of detailed magnetic field measurements everywhere except at the photosphere has made it challenging to determine its topology and to understand how it produces the observed plasma properties of the corona and solar wind. Recent progress based on the synthesis of diversified observations has shown that the corona is highly filamentary, that the coronal magnetic field is predominantly radial, and that the ability of closed fields to trap plasma at the base of the corona is a manifestation of how the solar field controls the solar wind. In this paper, we explain how these results are consistent with the relationship between density structure of white-light images and fields and flow. We point out that the ‘shape’ of the corona observed in white-light images is a consequence of the steep fall-off in density with radial distance, coupled with the inherent limitation in the sensitivity of the observing instrument. We discuss how the significant variation in radial density fall-off with latitude leads to a coronal shape that is more precisely revealed when a radial gradient filter is used, but which also gives a false impression of the tracing of highly non-radial fields. Instead, the coronal field is predominantly radial, and the two magnetic features that influence the shape of the corona are the closed fields at the base of the corona, and the polarity reversal forming the heliospheric current sheet in the outer corona. An erratum to this article is available at .  相似文献   

2.
The hybrid solar eclipse of April 8, 2005, provided a good opportunity to observe the white-light solar corona, even though the eclipse lasted just 30 seconds and could be seen only from ships in the Pacific Ocean. During the eclipse, we detected a unique ‘cloud’ of particles in the white-light corona above the west limb ≈260°–270°. We compare this feature with EUV images from SOHO. The feature’s density and temperature seem comparable to a coronal condensation, and, like a coronal condensation, it is connected to the emergence of material from the solar surface without a flare. However, the morphology of the feature shows clear differences from a classical coronal condensation.  相似文献   

3.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

4.
Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.  相似文献   

5.
The inner white-light corona (up to 2 solar radii) can only be observed during total solar eclipses. New mathematical methods of the corona image processing and digital photo cameras or CCD cameras allow us to detect very faint structures (of a few arcseconds) in this part of the corona, even from images taken with relatively small telescopes (1–2 meters in the focal length). In the present paper we will discuss such structures as observed during the last few solar eclipses, mainly those of 2001 and 2006. Obtained results show that the white-light corona is highly structured not only in the sense of a variety of different types of its classical “objects”, e.g., polar plumes, helmet streamers, threadlike streamers, etc, but also within these objects themselves. Voids, loops, radial and non-radial threads, and other yet-undefined dark structures (“empty space”?) are well visible especially inside helmet streamers. This strongly indicates that the classical picture of the corona characterized by a hydrostatic distribution of density and temperature is no longer a sufficient assumption. It is magnetic forces that play a dominant role in shaping and structuring this part the corona. Given a remarkable similarity between the EUV corona as observed by SOHO and the white-light corona observed by us during the above-mentioned eclipses up to two solar radii. We suggest that the “missing” observations of the white-light corona should be replaced by those of the EUV one. Moreover, the last eclipse’s observations also indicate that the knots of some prominences extend well into the white-light corona. So, the next total eclipses of the Sun, of 1 August 2008 and 22 July 2009, offer an excellent opportunity for preparing joint observations for space-borne and ground-based eclipse teams.  相似文献   

6.
We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as ≈ 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence (J. Geophys. Res. 113, A07101, 2008) examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper (Geophys. Res. Lett. 36, L23102, 2009) analyzed the α-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.  相似文献   

7.
The very steep decrease in density with heliocentric distance makes imaging of coronal density structures out to a few solar radii challenging. The radial gradient in brightness can be reduced using numerous image processing techniques, thus quantitative data are manipulated to provide qualitative images. We introduce a new normalizing-radial-graded filter (NRGF): a simple filter for removing the radial gradient to reveal coronal structure. Applied to polarized brightness observations of the corona, the NRGF produces images which are striking in their detail. Total-brightness, white-light images include contributions from the F corona, stray light, and other instrumental contributions which need to be removed as effectively as possible to properly reveal the electron corona structure. A new procedure for subtracting this background from LASCO C2 white-light, total-brightness images is introduced. The background is created from the unpolarized component of total-brightness images and is found to be remarkably time-invariant, remaining virtually unchanged over the solar cycle. By direct comparison with polarized-brightness data, we show that the new background-subtracting procedure is superior in depicting coronal structure accurately, particularly when used in conjunction with the NRGF. The effectiveness of the procedures is demonstrated on a series of LASCO C2 observations of a coronal mass ejection (CME).  相似文献   

8.
Badalyan  O. G.  Livshits  M. A.  SÝkora  J. 《Solar physics》1997,173(1):67-80
The results of the white-light polarization measurements performed during three solar eclipses (1973, 1980, 1991) are presented. The eclipse images were processed and analysed by the same technique and method and, consequently, the distributions of the polarization and coronal intensity around the Sun were obtained in unified form for all three solar eclipses. The mutual comparisons of our results, and their comparison with the distributions found by other authors, allowed the real accuracy of the current measurements of the white-light corona polarization, which is not worse than ±5%, to be estimated. We have investigated the behaviour of the polarization in dependence on heliocentric distance in helmet streamers and coronal holes. Simultaneous interpretation of the data on polarization and intensity in white-light helmet streamers is only possible if a considerable concentration of coronal matter (plasma) towards the plane of the sky is assumed. The values obtained for the coronal hole regions can be understood within the framework of a spherically symmetrical model of the low density solar atmosphere. A tendency towards increasing polarization in coronal holes, connected with the decrease of the hole's size and with the transition from the minimum to the maximum of the solar cycle, was noticed. The problem of how the peculiarities of the large-scale coronal structures are related to the orientation of the global (dipole) solar magnetic field and to the degree of the goffer character of the coronal and interplanetary current sheet is discussed briefly.  相似文献   

9.
We present digitized photographs of the white-light solar corona taken during the total solar eclipse of 22–23 November, 1984, on both calibrated black-and-white film and on color film. Conditions on site in Hula, Papua New Guinea, were exceptionally clear. The color image was used to produce an isophotal map of the inner corona, from which a flattening coefficient of 0.23 was measured. The black-and-white image was enhanced through a digital radial filter. Our images are the best processed images available from the 1984 eclipse and so provide important data for synoptic observations.  相似文献   

10.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously through a single objective of the telescope as the coronal radiation passed through three polarizers (whose transmission directions were turned 0°, 60°, and 120° in the chosen direction); one image was obtained without a polarizer. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained the distributions of polarization brightness, K-corona brightness, the degree of K-corona polarization and the total polarization degree; the polarization direction, depending on the latitude and radius in the plane of the sky, was also obtained. We calculated the radial distributions of electron density depending on the latitude. The properties of all these distributions were compared for different coronal structures. We determined the temperature of the coronal plasma in different coronal structures assuming hydrostatic equilibrium.  相似文献   

11.
Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 R as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066). We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50°. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.  相似文献   

12.
From observations of the solar white-light corona at 65 eclipses from 1851 to 2015 we confirm earlier findings that the flattening index of the white-light corona depends on the phase, rather than the magnitude of solar cycles, which is in contrast with behavior of other major solar activity indices like the sunspot number, the 2800 MHz radio flux, etc. This indicates that mechanisms responsible for creation and distribution of helmet streamers, the most essential coronal structures influencing the flattening index, could be of different magnetic nature from those of other manifestations of solar surface activity.  相似文献   

13.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

14.
We present meterwave maps of the solar corona made with the Clark Lake Radioheliograph at 30.9, 50, and 73.8 MHz for one solar rotation. We compare and contrast them with optical data: 10830 Å maps, white-light coronagraph images (SOLWIND and Mauna Loa K coronameter) and forbidden line scans. Most of the sources in the radio maps persist for two days or more, and appear to rotate approximately with the solar rate. A coronal hole seen against the disk at all three frequencies shows interesting similarities and significant differences with the optical signatures of the hole. Elongated features of the 50 MHz corona correspond rather well to the azimuthal position of white light streamers seen in SOLWIND images. Synoptic charts made from the radio maps show overall similarities to synoptic charts constructed from (limb) coronagraph data. Some of the differences may result from the different weightings given by the radio and optical data to density and temperature, or by the different sensitivities to non-radial geometries. We show that the combined use of meter wave and optical images provide considerable new insights into the three-dimensional structure of the low to middle corona.  相似文献   

15.
Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.  相似文献   

16.
As part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.  相似文献   

17.
Photographic observations were obtained of the radial and tangential polarization of the solar corona for the 1970, March 7, solar eclipse. The corona was photographed using a neutral density filter and rotating linear polaroid sectors to allow the polarization structure to be seen from 1 to 6 solar radii. Anomalously high polarizations were found for structures with the E-tangential intensity being predominantly larger than the E-radial intensity. These structures are generally filamentary in nature and radial in direction. One case with a high radial polarization was also found. The photographs were calibrated accurately against the Earth shine from the Moon. Possible source mechanisms are discussed that may explain this new component in the solar corona. Most sources may be ruled out on physical grounds. One possibility appears to be synchrotron radiation from 10 GeV electrons in a 0.4 G field. The existence of these electrons, however, is unlikely in that spacecraft observations at 1 AU do not confirm their presence.  相似文献   

18.
Determining the relative brightness of the solar corona is one of the most critical stages in solar eclipse studies. For this purpose, images taken with different exposures and polarization angles in white-light observations are used. The composite image of each polarization angle is produced by combining the images of different exposures. With the help of the intensity calibration function of these images, the relative intensity of the corona can be calculated. The total brightness of the solar corona is calculated using Stokes parameters obtained from intensity values of three polarization angles. In this study, two methods are presented: the first is used to obtain the intensity calibration function of the photographic material using calibration images, and the second is used to calculate the combined intensity values of images taken with different polarization angles.  相似文献   

19.
During the eclipse of 1980 February 16 we photographed the solar corona at an effective wavelength of 6300 å. Using a quadruple camera we also obtained the coronal pictures in polarized light for four Polaroid orientations. We have used these observations to derive the coronal brightness and polarization and from these the electron densities in the corona out to a distance of about 2.5 R⊙ from the centre of the disc. The coronal brightness matches well with that of the corona of 1958 October 12.  相似文献   

20.
This paper will review the input of 65 years of radio observations to our understanding of solar and solar–terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar–terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio developments at Earth and in space, which are from our point of view, necessary for the future of solar and interplanetary physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号