首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron densities throughout the D- and E-regions of the ionosphere have been measured during two rocket flights from Woomera, Australia; one in the daytime and one at night. The detailed distributions have a height resolution of much better than a km over the majority of the height range which was 66–175 km on the day flight and 83–184 km at night. This resolution has enabled sharp changes in electron density to be observed such as those associated with positive ion changes near 85 km (Reid 1970) and with sporadic-E layers.The detail and large dynamic range in electron density (102 to 3 × 105 cm?3) were achieved by combining the data from an LF radio propagation experiment with those from a probe experiment. The radio equipment allowed measurement of both the phase and amplitude of the wavefield above a ground transmitter. The method of deducing electron density from the phase velocity of the penetrating component of the wavefield is explained in detail. A comparison of the probe current and electron density has shown that the ratio between them varies slowly with height.  相似文献   

2.
A parametric study was performed of electron temperature variation in the wake of a conducting sphere in a streaming plasma. The flow conditions were varied as follows: the ambient electron temperatures in the range 850–2450 K; the ambient electron densities in the range 5 × 104?7 × 105/cm3; and body potentials relative to plasma potential in the range of + 1.7 to ?2.8 V for an ion beam energy of ~4 eV. Electron temperature enhancements were observed which ranged up to 200 per cent above ambient in the nearest proximity of the body surface. The magnitude of the enhancement depends upon the ambient density, temperature and body potential.  相似文献   

3.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

4.
This paper examines the role played by the high energy tail of the electron distribution function on Langmuir probe characteristics. A model is developed to derive the mean energy and the density of the hyperthermal electrons from probe characteristics for two ionospheric rocket flights involving different plasma conditions. The hyperthermal electrons are shown to influence the electron temperature measurement even if they constitute only a small fraction of the total electron concentration. The influence of the geomagnetic field, the collisions and the velocity of the vehicle on the probe data are also examined.  相似文献   

5.
The theoretical performance and accuracy of the Sayers type of R.F. capacitance electron density probe are discussed in some detail, and results from two ionospheric flights of this probe are given. After a brief survey of current satellite wake theories, the broad features of a sounding rocket wake are postulated, and its likely extent calculated by a method applicable to almost any rocket and probe configuration. Both electron density and temperature data are shown to correlate well with the rocket attitude and the postulated wake, confirming the existence of a wake and its importance to probe measurements. Evidence for prolonged outgassing from the rocket motors was also found.  相似文献   

6.
Existing theory for cylindrical and spherical probes are used to derive expressions for double-probe current-voltage characteristics under low density, flowing collisionless conditions. These conditions prevail when the following conditions hold: charged particle mean free path 》 Debye length 》 probe radius, and ion thermal velocity ? probe speed ? electron thermal velocity. Explicit formulae are given for calculating electron temperature and plasma density for both spherical and cylindrical probes.  相似文献   

7.
Electron density in the ionospheric F region estimated by a Langmuir probe has been found to be much lower than those by other techniques. It is shown that this is due to the effect of surface contamination of Langmuir probe electrodes. This apparent reduction effect in electron density is more pronounced for a larger ambient electron density and for a slow sweep-rate of the probe voltage.  相似文献   

8.
The four entry probes of the Pioneer Venus mission measured the radiative net flux in the atmosphere of Venus at latitudes of 60°N, 31°S, 27°S, and 4°N. The three higher latitude probes carried instruments (small probe net flux radiometers; SNFR) with external sensors. The measured SNFR net fluxes are too large below the clouds, but an error source and correction scheme have been found (H. E. Revercomb, L. A. Sromovsky, and V. E. Suomi, 1982, Icarus52, 279–300). The near-equatorial probe carried an infrared radiometer (LIR) which viewed the atmosphere through a window in the probe. The LIR measurements are reasonable in the clouds, but increase to physically unreasonable levels shortly below the clouds. The probable error source and a correction procedure are identified. Three main conclusions can be drawn from comparisons of the four corrected flux profiles with radiative transfer calculations: (1) thermal net fluxes for the sounder probe do not require a reduction in the Mode 3 number density as has been suggested by O. B. Toon, B. Ragent, D. Colburn, J. Blamont, and C. Cot (1984, Icarus57, 143–160), but the probe measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5 × 10?5 near 60°, 2–5 × 10?4 near 30°, and 5 × 10?4 near the equator. The suggested latitudinal variation of IR cooling is consistent with descending motions at high latitudes, and it is speculated that it could provide an important additional drive for the general circulation.  相似文献   

9.
An exact theory is developed for a triple-probe in an orbit-motion-limited flowing collisionless plasma, i.e. when the charged particle mean free path ? Debye length ? probe radius, and the electron thermal velocity ? probe speed ? ion thermal velocity. Formulae for determining electron temperature and electron density are given for both spherical and cylindrical probes. Analytical results show that the effect of ion temperature on measurements of plasma parameters is small when the probe speed is large.  相似文献   

10.
We investigated the chemical evolution in IC 63 nebula, a photo-dominated region (PDR). The chemical structure and the ionization state depend directly on the intensity of the incident UV radiation. The electron density is also affected by the incident UV radiation. It decreases gradually with the increase of the depth in the cloud varying from 5.9×10-5 at the surface to 9.6×10-9 in the core. Ionic carbon(C+) dominates the electron density in the outer region while ionic metals and other ions (H+, CH2D+, and HCO+) are the most dominant in the deepest region. Our results at A V = 6.7 mag are in good agreement with observations except in the case of H2S, where the calculated value is lower than the observed value by about two orders of magnitude.  相似文献   

11.
Mason  H.E.  Landi  E.  Pike  C.D.  Young  P.R. 《Solar physics》1999,189(1):129-146
The analysis of two active regions on the limb using observations from SOHO-CDS allows us to determine the electron density and temperature distribution of the coronal emission. We find that the active regions have hot cores (3×106 K) with larger cooler (106 K) loop structures extending above the limb. The electron number density, determined using the Si X diagnostic line ratio, is found to be highest in the active region core (greater than 2.3×109 cm–3). Electron number density values are determined for a range of spectral lines from different ions and are found to increase with temperature between 0.8 and 2.5×106 K. These results are consistent with recent models of enhanced heating along the compact core of active regions, where the magnetic field shear is strongest.  相似文献   

12.
During the evening of 9 April and the morning of 10 April 1969, the twilight zenith intensity of the atomic oxygen red line OI(3P-1D) at 6300 Å was measured at the Blue Hill Observatory (42°N, 17°W). At the same time incoherent scatter radar data were being obtained at the Millstone Hill radar site 50 km distant. We have used a diurnal model of the mid-latitude F-region to calculate the ionospheric structure over Millstone Hill conditions similar to 9–10 April 1969. The measured electron temperature, ion temperature, and electron density at 800 km are used as boundary conditions for the model calculations. The diurnal variation of neutral composition and temperature were obtained from the OGO-6 empirical model and the neutral winds were derived from a semiempirical three-dimensional dynamic model of the neutral thermosphere. The solar EUV flux was adjusted to yield reasonable agreement between the calculated and observed ionospheric properties.This paper presents the results of these model computations and calculations of the red line intensity. The 6300 Å emission includes contributions from photoelectron excitation, dissociative recombination, Schumann-Runge photodissociation and thermal electron impact. The variations of these four components for morning and evening twilight between 90–120° solar zenith angles, and their relative contributions to the total 6300 Å emission line intensity, are presented and the total is compared to the observations. For this particular day the Schumann-Runge photodissociation component, calculated using the solar fluxes tabulated by Ackermann (1970), is the dominant component of the morning twilight 6300 Å emission. During evening twilight it is necessary to utilize a lower O2 density than for the morning twilight in order to bring the calculated and observed 6300 Å emission rates into agreement. The implication that there may be a diurnal variation in the O2 density at the base of the thermosphere is discussed in the light of available experimental data and current theoretical ideas.  相似文献   

13.
Keenan  F.P.  Katsiyannis  A.C.  Ramsbottom  C.A.  Bell  K.L.  Brosius  J.W.  Davila  J.M.  Thomas  R.J. 《Solar physics》2004,219(2):251-263

Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s 22p 3–2s2p 4 transitions in the 216–320 Å wavelength range. A comparison of these with an extensive dataset of solar active region, quiet-Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R 1= I(216.94 Å)/I(319.84 Å) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 108–1011 cm?3. However R 2= I(276.85 Å)/I(319.84 Å) and R 3=I(277.05 Å)/I(319.84 Å) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Å lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Å feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.

  相似文献   

14.
A rocket C.W. radio propagation experiment has been used to measure electron density profiles and the results compared with values calculated from ionograms. In general the agreement is satisfactory but significant discrepancies in the rocket measurements, during the up-leg portions of several rocket flights above 110 km were observed and possible causes are discussed. In one flight the effect of a travelling ionospheric disturbance on the N(h) profile was recorded. Sporadic E strata with thicknesses of 0.6–0.8 km were recorded in these flights.  相似文献   

15.
Measurements carried out using a cylindrical Langmuir probe operated in the electron accelerating region of the current-voltage characteristics under orbital limited conditions in low density plasmas, show the response of the probe to be in good agreement with Langmuir theory. By making observations in three different plasmas, namely a steady state plasma, an afterglow plasma and the ionospheric plasma it is confirmed that the form of the orbital limited characteristics of the probe is independent of the energy distribution of the electrons in the plasma. Comparative measurements of ionospheric electron densities made between a rocket borne cylindrical probe and a ground based ionosonde show good agreement to exist and thus demonstrate that the probe operated in this mode not only overcomes the significant problems associated with retarding region probe measurements but affords an accurate determination of electron density. This underlines the usefulness of this kind of probe for electron density measurements in plasmas where the energy distribution of the electrons is unknown.  相似文献   

16.
A simplified D-region model consisting of O2+, NO+ and their respective cluster ions grouped as Zo2+ and ZNO+ is used to reproduce the available rocket data on positive ion relative composition and effective clustering rates for the height range 70–90 km. The results of this analysis for a winter anomalous day (Sardinia, 40°N) are in good agreement with the presently known ideas on NO densities, O2+ production rates, mesospheric temperature, negative ion to electron density ratio and effective loss coefficient for electrons. Mesospheric nitric oxide density and temperature profiles from this study are in excellent agreement with the findings of Zbinden et al. (1975) and Hidalgo (1977) for the anomalous day at Sardinia.  相似文献   

17.
Three ionospheric probes were carried on the ESRO-4 satellite, a spherical gridded probe with swept potential collecting positive ions, a Langmuir probe measuring electron temperature and vehicle potential, and a fixed potential gridded probe measuring fluctuations in total ion density. ESRO-4 was placed in a polar orbit of apogee 1177 km, perigee 245 km on 22 November 1972 and ionospheric data of excellent quality were obtained until the spacecraft's re-entry on 15 April 1974. The instrumentation is described and early results are presented.  相似文献   

18.
Height profiles of auroral emissions at 3914 Å, 4861 Å, and 5577 Å were obtained in two rocket flights through medium intensity stable aurora. The 3914 Å N2+ integral intensity data were compared with intensity variations predicted by an auroral model for a range of primary electron energy spectra. The observed profiles for the two flights were well reproduced respectively by a 5.6 keV mono-energtic flux and by a flux with an exponential spectrum cutting off around 12 to 15 keV. The data for 5577 Å (available only above 120 km) bear a constant ratio to that for 3914 Å. The emission profiles derived for 3914 Å, peak at 115 and 107 km respectively.  相似文献   

19.
    
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

20.
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号