首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We briefly review the recent advances that have been made on the front of pulsating subdwarf B (sdB) stars. The first family of sdB pulsators, the EC 14026 stars, was discovered a few years ago and consists of short-period (~100?200 s) p-mode variables. The second type of pulsating sdB’s consists of the PG 1716+426 stars, a group of variables showing long-period (~1 h) g-mode pulsations. The existence of the latter was first reported less than a year ago. While the two types of sdB pulsators differ markedly in their observational characteristics, we recently found a unifying property in the sense that the observed modes in these objects are excited through the same driving process, a classic kappa mechanism associated with the radiative levitation of iron in the stellar envelope.  相似文献   

2.
3.
We summarize recent results of quantitative spectral analyses using NLTE and metal line-blanketed LTE model atmospheres. Temperatures and gravities derived for hundreds of sdB stars are now available and allow us to investigate systematic uncertainties of T e ff, log g scales and to test the theory of stellar evolution and pulsations. Surface abundance patterns of about two dozen sdB stars are surprisingly homogenous. In particular the iron abundance is almost solar for most sdBs. We highlight one iron-deficient and three super metal-rich sdBs, a challenge to diffusion theory. sdB stars are slowly rotating stars unless they are in close binary systems, which is hard to understand if the sdB stars were formed in merger events. The only exception is the pulsator PG 1605+072 rotating at vsin i= 39 km/s. Signatures of stellar winds from sdB stars may have been found.  相似文献   

4.
We make new non-local thermodynamic equilibrium calculations to deduce the abundances of neon from visible-region echelle spectra of selected Ne  i lines in seven normal stars and 20 HgMn stars. We find that the best strong blend-free Ne line that can be used at the lower end of the effective temperature T eff range is λ 6402, although several other potentially useful Ne  i lines are found in the red region of the spectra of these stars. The mean neon abundance in the normal stars (log  A =8.10) is in excellent agreement with the standard abundance of neon (8.08). However, in HgMn stars neon is almost universally underabundant, ranging from marginal deficits of 0.1–0.3 dex to underabundances of an order of magnitude or more. In many cases, the lines are so weak that only upper limits can be established. The most extreme example found is υ Her with an underabundance of at least 1.5 dex. These underabundances are qualitatively expected from radiative acceleration calculations, which show that Ne has a very small radiative acceleration in the photosphere, and that it is expected to undergo gravitational settling if the mixing processes are sufficiently weak and there is no strong stellar wind. According to theoretical predictions , the low Ne abundances place an important constraint on the intensity of such stellar winds, which must be less than 10−14 M yr−1 if they are non-turbulent.  相似文献   

5.
We present the results of Monte Carlo mass-loss computations for hot low-mass stars, specifically for subdwarf B (sdB) stars. It is shown that the mass-loss rates on the Horizontal Branch (HB) computed from radiative line-driven wind models are not high enough to create sdB stars. We argue, however, that mass loss plays a role in the chemical abundance patterns observed both in field sdB stars, as well as in cluster HB stars. The derived mass loss recipe for these (extremely) hot HB stars may also be applied to other groups of hot low-mass stars, such as post-HB (AGB-manqué, UV-bright) stars, over a range in effective temperatures between ?10 000 and 50 000 K. Finally, we present preliminary spectral synthesis on the more luminous sdB stars for which emission cores in Hα have been detected (Heber, U., et al.: 2003, in:Stellar Atmosphere Modeling, ASP Conference Proceedings, p. 251). We find that these line profiles can indeed be interpreted as the presence of a stellar wind with mass loss on the order of 10?11?M yr ?1.  相似文献   

6.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

7.
Pre-Main-Sequence stars with masses between 2 and 5 M (Herbig Ae/Be stars) have radiative subphotospheric envelopes. However, they possess strong stellar winds and show definite signs of activity which could be linked to surface magnetic field. Therefore, they must lose angular momentum at a significant rate.We investigate the effect of such angular momentum losses on the internal structure of these stars, and on the distribution of angular velocity inside them. This paper presents a preliminary analysis guided by an analogy with laboratory and geophysical fluids. We propose that the friction exerted at the stellar surface by the angular momentum losses produces a mixed layer below the surface, separated from the unperturbed interior by an interface. Using scaling laws established by experimental studies of sheared stratified fluids, we discuss a simplified model for the evolution of the mixed layer.Although this model is still too preliminary to allow quantitative predictions, we show that for a reasonable choice of parameters, the mixed layer penetrates into the stellar interior on a time-scale of 106 years, comparable to the Kelvin time-scale for the Herbig Ae/Be stars.  相似文献   

8.
During the course of an ongoing CCD monitoring program to investigate low-level light variations in subdwarf B (sdB) stars, weserendipitously discovered a new class of multimode pulsators withperiods of the order of an hour. These periods are a factor of tenlonger than those of previously known multimode sdB pulsators (EC14026 stars), implying the new pulsations are due to gravity modes rather than pressure modes. The iron opacity instability that drives the short period EC 14026 stars is effective in hot sdB's. Thelong period pulsators are found only among cooler sdB stars, wherethey are surprisingly common. The mechanism responsible for excitingthe deeper g-modes in cool sdB's is currently unknown, but thetemperature and gravity range in which these stars occur must be animportant clue. We present the first observational results for thisnew class of pulsating sdB stars, and discuss some possible implications.  相似文献   

9.
Rapid oscillations in the sdB star Feige 48 have been discovered. The frequency spectrum reveals at least four periods in a narrow interval from 340 to 380 s. The oscillation amplitude is typically a few per cent, but this star shows perhaps the most dramatic amplitude variability from night to night of any of the known sdB pulsators (EC 14026 stars). Analysis of multicolour absolute photometry, as well as low- and intermediate-dispersion spectroscopy, yields an effective temperature of 28 900 ± 300 K and log g  = 5.45 ± 0.05. Feige 48 is thus the coolest EC 14026 star. Its intermediate gravity and intermediate period suggest the existence of a period–gravity correlation, and unite the majority of the EC 14026 stars with the extreme object, PG 1605+072. The narrow frequency intervals in which the pulsations of Feige 48 and other EC 14026 stars fall suggest a narrow bandpass for the excitation mechanism.  相似文献   

10.
Radiation-driven winds of hot, massive stars showvariability in UV and optical line profiles on time scales of hours to days.Shock heating of wind material is indicated by the observed X-ray emission. We present time-dependent hydrodynamical models of these winds, where flowstructures originate from a strong instability of the radiative driving. Recent calculations (Owocki 1992) of the unstable growth of perturbations were restricted by the assumptions of 1-D spherical symmetry and isothermality of the wind. We drop the latter assumption and include the energy transfer in the wind. This leads to a severe numerical shortcoming, whereby all radiative cooling zones collapse and the shocks become isothermal again. We propose a method to hinder this collapse. Calculations for dense supergiant winds then show: (1) The wind consists of a sequence of narrow and dense shells, which are enclosed by strong reverse shocks (with temperatures of 106 to 107 K) on their starward facing side. (2) Collisions of shells are frequent up to 6 to 7 stellar radii. (3) Radiative cooling is efficient only up to 4 to 6R *. Beyond these radii, cooling zones behind shocks become broad and alter the wind structure drastically: all reverse shocks disappear, leaving regions ofpreviously heated gas.  相似文献   

11.
The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of ?? Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.  相似文献   

12.
During our campaign of acquiring follow-up photometric data to resolve short period pulsating sdB (EC14026 or V361 Hya) stars, we obtained data on the known pulsator KUV 04421+1416 and discovered that it is also in a reflection-effect binary. Here we present preliminary results of the pulsation analysis and provide some constraints on the companion, which is most likely an MV star. This makes KUV 04421+1416 only the second known system with an EC14026-type pulsator in a reflection-effect binary.  相似文献   

13.
Horizontal branch stars should show significant differential rotation with depth. Models that assume systematic angular momentum exchange in the convective envelope and local conservation of angular momentum in the core produce HB models that preserve a rapidly rotating core. A direct probe of core rotation is available. The nonradial pulsations of the EC14026 stars frequently show rich pulsation spectra. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.  相似文献   

14.
The radiative acceleration on iron inside stars may lead to an accumulation of this element in stellar internal layers. As discussed by several authors, this iron accumulation has many important consequences. It may lead to an extra convective zone, and in some cases it may help triggering stellar pulsations. However, the computations which have been done up to now ignore an important effect: the double-diffusive, or “thermohaline” convection induced by the inverse μ gradient. Detailed computations of all these processes have been introduced in the TGEC stellar evolution code. We show how thermohaline convection modifies the profiles of iron inside stars, with important consequences  相似文献   

15.
Wolf-Rayet stars     
This paper reviews the current status of knowledge regarding the basic physical and chemical properties of Wolf-Rayet stars; their overall mass loss and stellar wind characteristics and current ideas about their evolutionary status. WR stars are believed to be the evolved descendents of massive O-type stars, in which extensive mass loss reveals successive stages of nuclear processed material: WN stars the products of interior CNO-cycle hydrogen burning, and WC and WO stars the products of interior helium burning. Recent stellar evolution models, particularly those incorporating internal mixing, predict results which are in good accord with the different chemical compositions observationally inferred for WN, WC and WO stars. WR stars exhibit the highest levels of mass loss amongst earlytype stars: mass loss rates, typically, lie in the range [1–10]×10−5 M yr−1. Radiation pressure-driven winds incorporating multi-scattering in high ionisation-stratified winds may cause these levels, but additional mechanisms may also be needed.  相似文献   

16.
We report the discovery of large-amplitude (∼0.25 mag) pulsations in the bright ( V =12.8) sdB star, PG 1605+072. The dominant period is 480 s, but more than 20 periods were present on at least three separate occasions. Frequency analysis of the complete data set yields more than 30 periods. A few of these are harmonics or linear combinations of the strongest modes. Excluding the latter, the periods span a range of almost 400 s, which contrasts with the typical range <20 s for most other EC 14026 stars.
Analysis of multicolour photometry limited any cool companion to being a main-sequence star of type M0 or later. Balmer line profile fitting yielded an effective temperature of 32 100±1000 K and a log g of 5.25±0.10, significantly smaller than in the other stars of the EC 14026 class, and possibly indicative of a more evolved state. The lower gravity is probably responsible for the fact that the pulsation periods and amplitudes are respectively much longer and larger than in other stars of the class. This star is an obvious target for asteroseismological investigation using a multilongitude photometric campaign.  相似文献   

17.
We consider the evolution of a rotating star with a mass of 16M and an angular momentum of 3.25 × 1052 g cm2 s?1, along with the hydrodynamic transport of angular momentum and chemical elements in its interiors. When the partial mixing of matter of the turbulent radiative envelope and the convective core is taken into account, the efficiency of the angular momentum transport by meridional circulation in the stellar interiors and the duration of the hydrogen burning phase increase. Depending on the Schmidt number in the turbulent radiative stellar envelope, the ratio of the equatorial rotational velocity to the circular one increases with time in the process of stellar evolution and can become typical of early-type Be stars during an additional evolution time of the star on the main sequence. Partial mixing of matter is a necessary condition under which the hydrodynamic transport processes can increase the angular momentum of the outer stellar layer to an extent that the equatorial rotational velocity begins to increase during the second half of the evolutionary phase of the star on the main sequence, as shown by observations of the brightest stars in open star clusters with ages of 10–25 Myr. When the turbulent Schmidt number is 0.4, the equatorial rotational velocity of the star increases during the second half of the hydrogen burning phase in the convective core from 330 to 450 km s?1.  相似文献   

18.
With more and more exoplanets being detected, it is paid closer attention to whether there are lives outside solar system. We try to obtain habitable zones and the probability distribution of terrestrial planets in habitable zones around host stars. Using Eggleton’s code, we calculate the evolution of stars with masses less than 4.00 M . We also use the fitting formulae of stellar luminosity and radius, the boundary flux of habitable zones, the distribution of semimajor axis and mass of planets and the initial mass function of stars. We obtain the luminosity and radius of stars with masses from 0.08 to 4.00 M , and calculate the habitable zones of host stars, affected by stellar effective temperature. We achieve the probability distribution of terrestrial planets in habitable zones around host stars. We also calculate that the number of terrestrial planets in habitable zones of host stars is 45.5 billion, and the number of terrestrial planets in habitable zones around K type stars is the most, in the Milky Way.  相似文献   

19.
In this paper we have carried out an analysis of the predictions of the radiatively driven stellar winds theories on 63 stars belonging to clusters or associations. The spectral types in our sample range from O3 to B0 and all classes of luminosity are considered. The study has been carried out starting from the relationship between the stellar-wind velocity (v edge) obtained from the resonance doublet ofCIV for stars observed with the IUE, and the escape velocity. The stellar masses have been obtained from the evolutionary tracks of Maeder and Meynet. Results from recent NLTE analyses with blanketing of lines and winds have been used for the effective temperature.Based on data from the International Ultraviolet Explorer, de-archived from the Villafranca Data Archive of the European Space Agency.  相似文献   

20.
The property of inhomogeneous turbulence in conducting fluids to expel large‐scale magnetic fields in the direction of decreasing turbulence intensity is shown as important for the magnetic field dynamics near the base of a stellar convection zone. The downward diamagnetic pumping confines a fossil internal magnetic field in the radiative core so that the field geometry is appropriate for formation of the solar tachocline. For the stars of solar age, the diamagnetic confinement is efficient only if the ratio of turbulent magnetic diffusivity ηT of the convection zone to the (microscopic or turbulent) diffusivity ηin of the radiative interior is ηT/ηin 105. Confinement in younger stars requires larger ηT/ηin. The observation of persistent magnetic structures on young solar‐type stars can thus provide evidence for the nonexistence of tachoclines in stellar interiors and on the level of turbulence in radiative cores. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号