首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Highly nonadiabatic shock waves are formed at an early stage of a supernova explosion inside a stellar wind because of the large energy losses by direct radiation from the front. The properties of such waves are considered for velocities of (5?25)×103km s?1 and gas densities of 10?17?10?10 g cm?3. A critical energy flux going to “infinity” that separates two modes is shown to exist. If the flux is lower than the critical one, then energy losses cause even an increase in the post-shock temperature. An excess of the flux over its critical value results in an abrupt cooling and in a strong compression of the gas. For the flux equal to the critical one, the post-shock gas velocity matches the isothermal speed of sound. Approximate formulas are given for estimating the degree of gas compression and the post-shock radiation-to-gas pressure ratio at energy losses equal to the critical ones and for the limiting compression.  相似文献   

2.
3.
We investigate the conditions for the existence of an expanding virial shock in the gas falling within a spherical dark matter halo. The shock relies on pressure support by the shock-heated gas behind it. When the radiative cooling is efficient compared with the infall rate, the post-shock gas becomes unstable; it collapses inwards and cannot support the shock. We find for a monatomic gas that the shock is stable when the post-shock pressure and density obey     . When expressed in terms of the pre-shock gas properties at radius r it reads as  ρ r Λ( T )/ u 3 < 0.0126  , where ρ is the gas density, u is the infall velocity and Λ( T ) is the cooling function, with the post-shock temperature   T ∝ u 2  . This result is confirmed by hydrodynamical simulations, using an accurate spheri-symmetric Lagrangian code. When the stability analysis is applied in cosmology, we find that a virial shock does not develop in most haloes that form before   z ∼ 2  , and it never forms in haloes less massive than a few  1011 M  . In such haloes, the infalling gas is not heated to the virial temperature until it hits the disc, thus avoiding the cooling-dominated quasi-static contraction phase. The direct collapse of the cold gas into the disc should have non-trivial effects on the star formation rate and on outflows. The soft X-ray produced by the shock-heated gas in the disc is expected to ionize the dense disc environment, and the subsequent recombination would result in a high flux of Lα emission. This may explain both the puzzling low flux of soft X-ray background and the Lα emitters observed at high redshift.  相似文献   

4.
We have investigated the basic physical properties of the outflow that is created by a supersonic jet in a dense molecular cloud. We show that the dynamics of the interaction is strongly controlled by the rapid cooling of the post-shock gas at the head of the jet. The velocity of the gas is high in the vicinity of the jet head, but decreases rapidly as more material is swept-up. This type of outflow produces extremely high velocity clumps of post-shock gas which resemble the features seen in outflows. We also show that momentum transfer in bow shocks is more important than entrainment in high Mach number jets, as found in the protostellar environment.  相似文献   

5.
We have investigated the ionization structure of the post-shock regions of magnetic cataclysmic variables, using an analytic density and temperature structure model in which effects caused by bremsstrahlung and cyclotron cooling are considered. We find that in the majority of the shock-heated region where H- and He-like lines of the heavy elements are emitted, the collisional-ionization and corona-condition approximations are justified. We have calculated the line emissivity and ionization profiles for iron as a function of height within the post-shock flow. For low-mass white dwarfs, line emission takes place near the shock. For high-mass white dwarfs, most of the line emission takes place in regions well below the shock and hence it is less sensitive to the shock temperature. Thus, the line ratios are useful to determine the white dwarf masses for the low-mass white dwarfs, but the method is less reliable when the white dwarfs are massive. Line spectra can, however, be used to map the hydrodynamic structure of the post-shock accretion flow.  相似文献   

6.
Abstract— Systematic examination of dating results from various craters indicates that about 90% of the rocks affected by an impact preserve their pre-shock ages because shock and post-shock conditions are not sufficient to disturb isotopic dating systems. In the other 10% of target lithologies, various geochronometers show significant shock-induced effects. Major problems in dating impactites are caused by their non-equlibrated character. They often display complex textures, where differently shocked and unshocked phases interfinger on the sub-mm scale. Due to this, dating on whole rock samples or insufficiently pure mineral fractions often yielded ambiguous results that set broad age limits but are not sufficient to answer reliably questions such as a possible periodicity in cratering on Earth, or correlation of impact events with mass extinctions. Dating results from shock recovery experiments indicate that post-shock annealing plays the most important role in resetting isotopic clocks. Therefore, the major criterion for sample selection in and around craters is the post-shock thermal regime. Based on their different thermal evolution, the following geological impact formations can be distinguished: (1) the coherent impact melt layer, (2) allochthonous breccia deposits, (3) the crater basement, and (4) distant ejecta deposits. Samples of the coherent impact melt layer are the most suitable candidates for dating. Excellent ages of high precision can be obtained by internal Rb-Sr, and Sm-Nd isochrons, U-Pb analyses on newly crystallized accessory minerals, and K-Ar (39Ar-40Ar) dating of clast-free melt rocks. Fission track counting on glassy material has yielded correct ages, and paleomagnetic measurements have been successfully applied to post-Triassic craters. In the ideal case of a fast-cooling impact melt layer, all these different techniques should give identical ages. Allochthonous breccias contain shocked, unshocked, and/or glassy components in various proportions; and, hence, each of these ejecta deposits has its own individual thermal history, making sample evaluation difficult Glassy melt particles in suevitic breccias are well suited for fission track and Ar-Ar dating. Weakly shocked material may yield reliable Ar-Ar and fission track ages, if formation temperatures were high, and cooling rates moderate. In contrast, highly shocked but rapidly cooled lithologies show only disturbed and not reset isotopic systems. For ejecta deposits and the crater wall of young craters, dating with cosmogenic nuclides is a new and powerful technique. Crater basement lithologies have a high potential in impact dating, although it has not been exploited so far. A prerequisite for resetting of isotopic clocks in these lithologies is the presence of an overlaying impact melt layer, which causes thermal metamorphism. Fission track and K-Ar techniques are most promising, because both systems are easily reset at low temperatures. Good candidates for impact dating are long-term annealed rocks, even if shock metamorphic overprint is very weak. In addition, Ar-Ar dating dating of pseudotachylites appears promising. In large impact structures, where high temperatures persist for long times, polymict “footwall” breccias beneath the melt sheet are also appropriate for dating, using the isochron approach and U-Pb on accessory minerals. Distant ejecta material have undergone very fast cooling, and the ejecta deposits have ambient formation temperatures. Among this material, tektites and impact melt glass are ideal objects for Ar-Ar and fission track impact dating. Dating on other material from distant ejecta deposits, such as U-Pb analyses on zircons, offers new possibilities. Efforts to correlate distant ejecta with distinct craters critically depend on proper error assignment to a specific age. This aspect is illustrated on the K/T boundary example.  相似文献   

7.
New Hugoniot and release adiabate data for 1.8 g cm?3 lunar fines (sample, 70051) in the ç2 to ç70 kbar range demonstrate that upon shock compression intrinsic crystal density (ç3.1 g cm?3) is achieved undershock stresses of 15 to 20 kbar. Release adiabate determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above ç4 kbar. For shocks in the ç7 to 15 kbar range, the inferred,post-shock, specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to ç15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data for sample 70051 are taken to be representative of the response to impact of unconsolidated regolith material on the Moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds of as low as ç1 km s?1.  相似文献   

8.
A model of gas-dynamical flow during gravitational collapse is analyzed mathematically by assuming its spherical symmetry and self-similarity. A shock wave diverging from the center emerges in this model. The physical requirements imposed on the post-shock flow at the center for the specified parameters at infinity unambiguously determine the shock front and the flow behind it.  相似文献   

9.
Localised collimated flows of ionized gas are found in two hydrogen deficient planetary nebulae, Abell 30 and Abell 78 as well as in the Honeycomb complex of interlocking shells in halo of 30 Dor in the Large Magellanic Cloud. One common feature of these flows, in seemingly disparate objects, is that they all terminate at around the same difference in radial velocity (with respect to that of the systemic radial velocity). A possible explanation involves high speed flows being decelerated by mass-loading. In Abell 30 and 78, mass is injected by clumps embedded in the fast wind. In the Honeycomb nebula, a supernova blast wave has pierced an old dense shell wall which adds mass to the post-shock flow via a boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We performed an experiment using high-energy protons to characterize in situ the spatial and temporal evolution of a laser-driven shock propagating through a low-Z material. Radiography of the shock propagating through the low-Z transparent material (Lexan, quartz, diamond) enabled estimation of density under compression. In order to discriminate the influence of the shocked matter on the protons trajectory, a Monte-Carlo simulation was developed. This code describes the protons trajectory through the matter, calculating the scattering angle and the loss of energy.  相似文献   

11.
A shock wave passing through a stellar atmosphere disturbs the gas, and the consequent adjustment of the fluid is a redistribution of the shock's kinetic energy among the various degrees of freedom. This paper deals with the effects of the Lyman continuum on the shock front. The shock heated gas is cooled principally by ionizing collisions of ground state atoms. This process is followed by a large quasi-isothermal region in which radiative recombinations occur. A final cycle of processes consisting of ionization, photo-recombinations to upper-level and collisional de-excitation, gives way to a sequence of statistical balances as each degree of freedom in the fluid attains equilibrium. Our calculations show that to a great extent, the shock structure is separated into successive regions of internal and radiative relaxation by an intermediate layer of ionized gas appearing at high shock speeds. Numerical results are presented for a range of shock speeds typifying a cepheid atmosphere.Radiation field and gas motions in shock waves are coupled, but the gas reacts little to the radiation it produces. Only the Lyman continuum has an appreciable effect on the shock structure. The principal escape of energy from the shock wave is through continuum radiation produced in recombinations to upper levels; thus the continuum emission in the red is stronger than an equivalent black body. Lyman photons are trapped in the shock while 20–30% of the shock's kinetic energy escapes to the Balmer and Paschen continua after the Lyman continuum is in equilibrium. The post- and pre-shock lines, as well as the post-shock continuum above the Lyman constitute the only observable spectra which emanate from the shock wave. The shock structure is perturbed only by the radiation which is not observed, and its absence tends to distort the emission profile from a Planck distribution.This work was originally started at Smithsonian Observatory and was completed at City College New York under contract with NASA Institute for Space Studies, New York.  相似文献   

12.
The origin of radio emission from plerions is considered. Recent observations suggest that radio-emitting electrons are presently accelerated rather than having been injected at early stages of the plerion evolution. The observed flat spectra without a low-frequency cut-off imply an acceleration mechanism that raises the average particle energy by orders of magnitude but leaves most of the particles at an energy of less than approximately a few hundred MeV. It is suggested that annihilation of the alternating magnetic field at the pulsar wind termination shock provides the necessary mechanism. Toroidal stripes of opposite magnetic polarity are formed in the wind emanating from an obliquely rotating pulsar magnetosphere (the striped wind). At the termination shock, the flow compresses and the magnetic field annihilates by driven reconnection. Jump conditions are obtained for the shock in a striped wind. It is shown that the post-shock magnetohydrodynamic parameters of the flow are the same as if the energy of the alternating field had already been converted into plasma energy upstream of the shock. Therefore, the available estimates of the ratio of the Poynting flux to the matter energy flux, σ, should be attributed not to the total upstream Poynting flux but only to that associated with the average magnetic field. A simple model for the particle acceleration in the shocked striped wind is presented.  相似文献   

13.
Young T Tauri stars exhibit strong solar-type magnetic activity, with extremely high temperature coronae and energetic flares. In a few systems discovered with Chandra and XMM-Newton there is also evidence for X-ray emission produced by shocks associated with magnetically channeled accretion. A recent 489 ksec Chandra HETG/ACIS-S observation of the classical T Tauri star TW Hydrae has provided a wealth of spectroscopic diagnostics not available in lower signal-to-noise ratio observations. Using line ratios for electron temperature, electron density, and column density we have found that the shock produced by the accelerating material in the accretion stream behaves as predicted by standard theory. However, the properties of the post-shock plasma differ substantially from the predictions of standard 1D shock models (Brickhouse et al. in Astrophys. J. 710:1835, 2010). The accretion process apparently heats the stellar atmosphere up to soft X-ray emitting temperatures, providing hot ions to populate the magnetic corona, in loops, stellar wind, and/or jets. This gas is highly turbulent, as evidenced by non-thermal line broadening. The observed properties of the accretion-fed corona should constrain theoretical models of an accretion-driven dynamo.  相似文献   

14.
A high velocity radiative shock, or one moving into high-metallicity gas, provides an efficient means to generate a strong local UV photon field. The optical emission from the shock and precursor region is dominated by the photoionised gas, rather than by the cooling region, and the total optical + UV emission scales as the mechanical energy flux through the shock. In this paper, such models are applied to oxygen-rich supernova remnants and AGN. For AGN, the degree of magnetic support in the post-shock gas is an important parameter. LINER and cooling flow spectra can be understood as resulting from high velocity shocks without precursors, while Seyfert 1.5–2 galaxy emission line ratios result from high velocity shocks with their photoionised precursor HII regions. This model explains the problem of the high electron temperatures observed in both classes of object.  相似文献   

15.
I present a model for the ionization cones of NGC1068, and, by extension, for Seyfert Galaxies in general. In this, the cones represent the hypersonic interaction of a sheet of material expelled from close to the galactic nucleus with the interstellar medium of the galaxy. Such a model produces a turbulent magnetically-supported shearing mixing layer with a Kelvin-Helmholtz unstable outer boundary. This drives strong shocks into the dense wall material, and generates fast stand-off shocks in the entrainment flow. The EUV photons produced in the fast shock ionize both the wall material and the entrainment layer to generate the broad highly excited lines that are such a characteristic of the emission line spectrum. This model is consistent with the energy budget, the observed spectrum, the emission line widths, and provides sufficient column density to produce an electron scattering "mirror".  相似文献   

16.
The contraction of an interstellar cloud is followed. The results indicates that there are shock waves appear during contraction. In order to study the effect of shock waves, two models have been studied. The post-shock temperature for the two models are, respectively, 3006 K and 2984 K. The density increases by more than three orders of magnitude. The gas is generally cooled by atoms, molecules, and grains. The dominant cooling process changes according to the chemical composition and the temperature of the gas. The thermal equilibrium depends on the existing physical conditions.  相似文献   

17.
A self-similar solution to Sedov’s problem of a strong explosion in a homogeneous medium is generalized to the case of relativistic-particle generation in a supernova remnant; the particles are accelerated by Fermi’s mechanism at the shock front and in the perturbed post-shock region. Self-similarity takes place if the thickness of the prefront is small compared to its radius and if the pressure ratio of the relativistic and nonrelativistic components at the shock front is kept constant. In the presence of relativistic particles, the time dependence of the shock-front radius remains the same as that in their absence, but the plasma parameters in the inner perturbed region change appreciably. The shell of the matter raked up by the explosion is denser and thinner than that in the nonrelativistic case, the relativistic-particle pressure in the central region remains finite, and the nonrelativistic-gas pressure at the explosion center approaches zero. The influence of relativistic particles on the transition to the radiative phase of expansion of the supernova remnant and on its dynamics is studied. It is shown that relativistic particles can decrease several-fold the remnant radius at which the transition to the radiative phase occurs.  相似文献   

18.
We consider the self-similar problem of a supernova explosion in a radially inhomogeneous medium by taking into account the generation of accelerated relativistic particles. The initial density of the medium is assumed to decrease with distance from the explosion center as a power law, ρ 0 = A/r θ. We use a two-fluid approach in which the total pressure in the medium is the sum of the circumstellar gas pressure and the relativistic particle pressure. The relativistic particle pressure at the shock front is specified as an external parameter. This approach is applicable in the case where the diffusion coefficient of accelerated particles is small and the thickness of the shock front is much smaller than its radius. We have numerically solved a system of ordinary differential equations for the dimensionless quantities that describe the velocity and density behind the shock front as well as the nonrelativistic gas and relativistic particle pressures for various parameters of the inhomogeneity of the medium and various compression ratios of the medium at the shock front. We have established that the shock acceleration of cosmic rays affects most strongly the formation of a supernova shell (making it thinner) in a homogeneous circumstellar medium. A decrease in the circumstellar matter density with distance from the explosion center causes the effect of shock-accelerated relativistic particles on the supernova shell formation to weaken considerably. Inhomogeneity of the medium makes the shell thicker and less dense, while an increase in the compression ratio of the medium at the shock front causes the shell to become thinner and denser. As the relativistic particle density increases, the effect of circumstellar matter inhomogeneity on the shell formation becomes weaker.  相似文献   

19.
This paper explores the variations in radiative shock behavior originating from the properties of the system containing the shock. Specifically, the optical depth of the upstream region and the downstream region both affect the behavior of radiative shocks. Optically thick systems such as stellar interiors or supernovae permit only limited shock-induced increases in density. At the other limit, the radiation and shock dynamics in optically thin systems permits the post-shock density to reach arbitrarily large values. The theory of the shock structure is summarized for systems in which the upstream region is optically thin, common to some astrophysical systems and a number of experiments.  相似文献   

20.
We study the evolution of supernova remnants in a low-metallicity medium   Z /Z= 10−4 to 10−2  in the early universe, using one-dimensional hydrodynamics with non-equilibrium chemistry. Once a post-shock layer is able to cool radiatively, a dense shell forms behind the shock. If this shell becomes gravitationally unstable and fragments into pieces, next-generation stars are expected to form from these fragments. To explore the possibility of this triggered star formation, we apply a linear perturbation analysis of an expanding shell to our results and constrain the parameter range of ambient density, explosion energy and metallicity where fragmentation of the shell occurs. For the explosion energy of  1051 erg (1052 erg)  , the shell fragmentation occurs for ambient densities higher than  ≳102 cm−3 (10 cm−3  ), respectively. This condition depends little on the metallicity in the ranges we examined. We find that the mode of star formation triggered occurs only in massive  (≳108 M)  haloes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号