首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that large-scale shocks accompanying spiral density waves are the main sources of cosmic-ray electrons for whole galactic disks has been tested utilizing results of 10.7 GHz observations of spiral galaxies. It is suggested that the 10.7 GHz emission of galactic disks is largely controlled by star-forming processes, and that large-scale shocks apparently play a minor role.  相似文献   

2.
The importance of experiments: Constraints on chondrule formation models   总被引:1,自引:0,他引:1  
Abstract— We review a number of constraints that have been placed on the formation of chondrules and show how these can be used to test chondrule formation models. Four models in particular are examined: the “X‐wind” model (sudden exposure to sunlight <0.1 AU from the proto‐Sun, with subsequent launching in a magnetocentrifugal outflow); solar nebula lightning; nebular shocks driven by eccentric planetesimals; and nebular shocks driven by diskwide gravitational instabilities. We show that constraints on the thermal histories of chondrules during their melting and crystallization are the most powerful constraints and provide the least ambiguous tests of the chondrule formation models. Such constraints strongly favor melting of chondrules in nebular shocks. Shocks driven by gravitational instabilities are somewhat favored over planetesimal bow shocks.  相似文献   

3.
We discuss the stability of galactic discs in which the energy of interstellar clouds is gained in encounters with expanding supernova (SN) remnants and lost in inelastic collisions. Energy gain and loss processes introduce a phase difference between the pressure and density perturbations, making discs unstable on small scales for several recipes of star formation. This is in contrast to the standard stability analysis in which small-scale perturbations are stabilized by pressure. In the limit of small scales, the dispersion relation for the growth rate reduces to that of thermal instabilities in a fluid without gravity. If instabilities lead to star formation, then our results imply a secondary mode of star formation that operates on small scales and feeds on the existence of a primary mode on intermediate scales. This may be interpreted as positive feedback. Further, the standard stability criterion on intermediate scales is significantly modified.  相似文献   

4.
In order to understand star formation it is important to understand the dynamics of atomic and molecular clouds in the interstellar medium (ISM). Non-linear hydrodynamic flows are a key component to the ISM. One route by which non-linear flows arise is the onset and evolution of interfacial instabilities. Interfacial instabilities act to modify the interface between gas components at different densities and temperatures. Such an interface may be subject to a host of instabilities, including the Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Recently, a new density interface instability was identified. This self-gravity interfacial instability (SGI) causes any displacement of the interface to grow on roughly a free-fall time-scale, even when the perturbation wavelength is much less than the Jeans length. In previous work, we used numerical simulations to confirm the expectations of linear theory and examine the non-linear evolution of the SGI. We now continue our study by generalizing our initial conditions to allow the acceleration due to self-gravity to be non-zero across the interface. We also consider the behaviour of the SGI for perturbation wavelengths near the Jeans wavelength. We conclude that the action of self-gravity across a density interface may play a significant role in the ISM either by fuelling the growth of new instabilities or modifying the evolution of existing instabilities.  相似文献   

5.
I present a model for the ionization cones of NGC1068, and, by extension, for Seyfert Galaxies in general. In this, the cones represent the hypersonic interaction of a sheet of material expelled from close to the galactic nucleus with the interstellar medium of the galaxy. Such a model produces a turbulent magnetically-supported shearing mixing layer with a Kelvin-Helmholtz unstable outer boundary. This drives strong shocks into the dense wall material, and generates fast stand-off shocks in the entrainment flow. The EUV photons produced in the fast shock ionize both the wall material and the entrainment layer to generate the broad highly excited lines that are such a characteristic of the emission line spectrum. This model is consistent with the energy budget, the observed spectrum, the emission line widths, and provides sufficient column density to produce an electron scattering "mirror".  相似文献   

6.
An elementary review about stellar and galactic dynamics is presented. Despite involving extremely classical Newtonian physics, stellar dynamics presents some fundamental difficulties rarely discussed in the literature, such as why the phase space distribution is assumed to be a smooth function of coordinates. Many systems are found to be unstable over intermediate time-scales, as more instabilities have been discovered over the years, so the old aim of describing equilibrium stable systems shifts presently toward understanding evolutive systems. From the linearized variational Boltzmann equation a distinction can be made between instabilities triggered by the chaotic part of phase space, and instabilities caused by steep gradients in the velocity part of the distribution function. The new challenges to include evolutive systems can presently only be studied efficiently with computer techniques. Future studies are likely to involve orders of magnitude more advanced computers in which parallelism will play a major role. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The evolution of three-dimensional (3D), dynamo excited galactic magnetic fields under the influence of a time-dependent gas flow in spiral arms is already well investigated. Our principal goal is to check how the dynamo-driven turbulent magnetic fields affect the gas flows. Numerical solutions of the full set of 3D MHD equations for dynamos in spiral galaxies are presented. Further we try to investigate the nonlinear evolution of magnetic instabilities in a global galactic model. The model includes differential rotation, eddy diffusivity and tensorial alpha-effect. In a first step the flow is driven by a prescribed gravitational potential. The vertical density stratification and the radial-azimutal spiral pattern are taken closely to observational data. We use a modified variant of the highly parallelized time-stepping ZeusMP code for the simulations of global galactic magnetic fields and gas flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We present a survey of different kinds of instabilities in the context of radiative colliding flows which greatly contribute to structure formation. In particular, this includes analytical results for different kinds of thin shell instabilities (DI, NDI, NTSI). New numerical results for the non-linear evolution of such instabilities in two dimensions, and their coupling with the thermal cooling instability are presented. The astrophysical implications are briefly outlined, in particular the formation of knots and filaments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
I review various observations which suggest that the winds of hot stars are inhomogeneous because of instabilities in the wind flow. On large scales, local wind overdensities are indirectly detected in the form of excess in the infra-red (IR) and radio free-free continuum. The X-ray detection of a hot (T ∼ 106) wind component suggests that the wind is pervaded with strong shocks. The small-scale density structure of the wind can be studied from observations of Line-Profile Variations (LPVs) in optical and UV spectral lines, which are formed close to the stellar surface. LPVs in lines of the P Cygni type consist of blue-edge variations in saturated profiles, and Discrete Absorption Components (DACs) and Periodic Absorption Modulations (PAMs) in unsaturated profiles. These LPVs are shown to be recurrent, and thought to result from instabilities propagating through the wind and generated at the stellar surface. LPVs in recombination lines appear as stochastic subpeaks, which suggest that wind instabilities have a clump-like, rather than shell-like, structure. The kinematics of LPVs in both line types is consistent with wind propagating shocks generated from radiative instabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We present two- and three-dimensional simulations involving Richtmyer–Meshkov and Rayleigh-Taylor instabilities run with the adaptive mesh refinement code, flash. Variations in the rate of mixing layer growth due to dimensionality, perturbation modes, and simulation resolution are explored. These simulations are designed for detailed comparisons with experiments run on the Omega laser to gain understanding of the mixing processes and to prepare for validation of the Flash code.  相似文献   

11.
The stability of galactic spiral shocks is considered. A steady-state shock should be checked to see (i) if it is evolutionary; (ii) if its front is stable against bending and torsion; and (iii) if the gas flow far from the front is stable. In the present paper the evolutionary criterion is obtained, which implies that conditions in galaxies may lead to the evolutionary spiral shocks as well as to the nonevolutionary ones. In the latter case a galactic shock cannot persist — it instantly decays, emitting spontaneously spiral waves. This leads to a plausible stratification of the spiral arms, to the formation of the secondary arms, ‘spurs’ and other secondary features. The steady-state gas flow with a galactic shock (Roberts, 1969) turns out to be unstable far from the shock front, the increment being proportional to the velocity gradient. For the spiral shock calculated by Roberts (1969) the instability develops ahead of the shock front with the same growth-time of about 3×107 years for all disturbance scales. This may provide a mechanism to generate turbulence of interstellar gas and to form the patchy structure of spiral arms which are known to include the structural units (gas clouds) on all possible scales.  相似文献   

12.
High-resolution numerical simulations reveal the turbulent character of the interaction zone of colliding, radiative, hypersonic flows. As the shocked gas cools radiatively, the cooled matter is squeezed into thin, high density shells. The remaining kinetic energy causes supersonic turbulence within these shells, before it is finally dissipated by internal shocks and vortex cascades. The density is far from homogeneous. High density filaments and large voids coexist. Its mean value is significantly below the stationary value. Similarly, areas with supersonic velocities are found next to subsonic regions. The mean velocity is slightly below or above the sound speed. While quasi uniform flow motions are observed on smaller scales the large scale velocity distribution is isotropic. Part of the turbulent shell is occupied by relatively uniform flow-patches, resembling coherent structures. Astronomical implications of the turbulent interaction zone are multifarious. It probably drives the X-ray variability in colliding wind binaries as well as the surprising dust formation on orbital scales in some WR-binaries. It lets us understand the knotty appearance of wind-driven structures as planetary and WR-ring nebulae, symbiotics, supernova remnants, galactic supperbubbles. Also, WR and other radiatively driven, clumpy winds, advection dominated accretion, cooling flows and molecular cloud dynamics in star-forming regions may carry its stamp This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
P.S. Cally 《Solar physics》2001,199(2):231-249
A spectral method is used to explore the nonlinear evolution of known linear instabilities in a 2D differentially rotating magneto-hydrodynamic shell, representing the solar tachocline. Several simulations are presented, with a range of outcomes for the magnetic field configuration. Most spectacularly, the `clam instability', which occurs for solar differential rotation and a strong broad toroidal magnetic field structure, results in the field tipping over by 90° and reconnecting. A common characteristic of all the simulations though is that the nonlinear instabilities produce a strong angular momentum mixing effect which pushes the rotation towards a solid body form. It is argued that this may be the mechanism required by the model of Spiegel and Zahn to limit the tachocline's thickness.  相似文献   

14.
The MHD wave instabilities due to non-uniform magnetic field and non-homogeneity of density have been studied. The reference (coordinate) system considered here is cylindrical type. The General Dispersion Relation (GDR) for the wave propagation in a gravitating but non-relativistic region has been derived. Similar to common knowledge, the said non-uniformities have been found to be responsible for the instability of the system. But interestingly many instability factors are produced due to presence of two types of non-uniformities simultaneously. This theory may add more clues for the event of instabilities, formation of hot plasma-bed in Galactic Central Region, and mass out-flow from there. Many conditions for instabilities could be obtained from GDR deduced here. However, a few conditions for critical wavelength of the MHD wave have been obtained in terms of system parameters (like gradient of magnetic field and rotation). This theory, in turn, may be helpful for the better understanding of the Explosion Theory of formation of outer structure of Galaxies like ours.  相似文献   

15.
In this paper, we extend the study of instabilities in flows driven by the radiation pressure of an ionizing continuum to flows that are not plane parallel. It is well known that the plane-parallel instability leads eventually to the formation of continuum-driven shocks backed by a sonic transition. If these structures are thin, we find that they are unstable to a corrugation mode, and evolve to form sharp-peaked triangular profiles. Once this has occurred, the thin-shock approximation is no longer valid.
We study the further development of the shocks by numerical hydrodynamic simulations. The flow tends to break up into numerous discrete bow-shaped components. The speed of these components through the upstream material is almost constant. As a result, the maximal velocity of radiatively driven shocks through the upstream gas may be determined by instabilities rather than by other physical effects. Interactions between gas in the wings of neighbouring bowshocks can, however, form subsequent generations of bowshocks that are faster and more acute than their predecessors.
One likely location where continuum-driven shocks may occur is in the broad-line regions of active nuclei. We discuss the application of our results to such flows.  相似文献   

16.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

17.
《New Astronomy Reviews》2002,46(2-7):439-442
Three-dimensional simulations of light hydrodynamic jets are computed using the Zeus-3D code. We employ parameters corresponding to moderate to high power radio jets emerging through a galactic atmosphere or halo, and eventually crossing a tilted pressure matched interface with a hotter intracluster medium. These simulations aim the jets so that they hit massive dense clouds within the galactic halo. Such clouds are set up with radii several times that of the jet, and nominally correspond to giant molecular cloud complexes or small cannibalized galaxies. We find that powerful jets eventually disperse the clouds, but that, for the off-center collisions considered, non-axisymmetric instabilities are induced in those jets. Those instabilities grow faster for lower Mach number jets, and can produce disruptions substantially sooner than occurred in our earlier work on jets in the absence of collisions with massive clouds. Such interactions could be related to some Compact Steep Spectrum source morphologies. Very weak jets can be effectively halted by reasonably massive clouds, and this may have relevance for the paucity of radio jets in spiral galaxies. Slow, dense jets may be bent, yet remain stable for fairly extended times, thereby explaining some Wide-Angle-Tail and most “dog-leg” morphologies.  相似文献   

18.
Observations of active galactic nuclei imply that shocks must be an essential and important part of their structure. We outline the basic observations, and discuss those features which must be addressed by any physical model of active nuclei. These features, in particular the observed spectrum of strong emission and absorption lines, lead naturally to the conclusion that shocks are present. The velocity widths of these lines, which range from hundreds to many thousands of kilometres per second, are most readily explained by models in which shocks play an important role in the generation of cool gas. The extreme parameters of the shocks in and around active nuclei provide a unique application for the physics discussed in this meeting.  相似文献   

19.
We study analytically and numerically the evolution of the two-dimensional coherent structure of bubbles and spikes in the Richtmyer-Meshkov instability (RMI) for fluids with a finite density ratio. New diagnostics and scalings are suggested for accurate quantification of RMI dynamics. New similarity features of the late-time instability evolution are observed. The results obtained can serve as benchmarks for high energy density laboratory experiments.  相似文献   

20.
An extensive concentration of neutral hydrogen has been observed in the fourth galactic quadrant, with a mean radial velocity of +44 km s?1 referred to the local standard of rest. At a distance ofR kpc from the Sun this structure would contain 2.5×104 R 2 solar masses of neutral hydrogen. Five possible interpretations of this extensive concentration are considered: (1) part of the shell of a nearby explosive event; (2) a distant spiral arm of the Galaxy; (3) an extragalactic object; (4) material falling into our Galaxy; (5) gas expelled from the galactic center. Arguments are offered against the first three possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号