首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We study numerically the restricted five-body problem when some or all the primary bodies are sources of radiation. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points are given. We found that the number of the collinear equilibrium points of the problem depends on the mass parameter β and the radiation factors q i , i=0,…,3. The stability of the equilibrium points are also studied. Critical masses associated with the number of the equilibrium points and their stability are given. The network of the families of simple symmetric periodic orbits, vertical critical periodic solutions and the corresponding bifurcation three-dimensional families when the mass parameter β and the radiation factors q i vary are illustrated. Series, with respect to the mass (and to the radiation) parameter, of critical periodic orbits are calculated.  相似文献   

2.
Families of asymmetric periodic orbits at the 2/1 resonance are computed for different mass ratios. The existence of the asymmetric families depends on the ratio of the planetary (or satellite) masses. As models we used the Io-Europa system of the satellites of Jupiter for the case m1>m2, the system HD82943 for the new masses, for the case m1=m2 and the same system HD82943 for the values of the masses m1<m2 given in previous work. In the case m1m2 there is a family of asymmetric orbits that bifurcates from a family of symmetric periodic orbits, but there exist also an asymmetric family that is independent of the symmetric families. In the case m1<m2 all the asymmetric families are independent from the symmetric families. In many cases the asymmetry, as measured by and by the mean anomaly M of the outer planet when the inner planet is at perihelion, is very large. The stability of these asymmetric families has been studied and it is found that there exist large regions in phase space where we have stable asymmetric librations. It is also shown that the asymmetry is a stabilizing factor. A shift from asymmetry to symmetry, other elements being the same, may destabilize the system.  相似文献   

3.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

4.
We study numerically the asymptotic homoclinic and heteroclinic orbits around the hyperbolic Lyapunov periodic orbits which emanate from Euler's critical points L 1 and L 2, in the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these Lyapunov orbits, are also presented. Poincaré surface of sections of these manifolds on appropriate planes and several homoclinic and heteroclinic orbits for the gravitational case as well as for varying radiation factor q 1, are displayed. Homoclinic-homoclinic and homoclinic-heteroclinic-homoclinic chains which link the interior with the exterior Hill's regions, are illustrated. We adopt the Sun-Jupiter system and assume that only the larger primary radiates. It is found that for small deviations of its value from the gravitational case (q 1 = 1), the radiation pressure exerts a significant impact on the Hill's regions and on these asymptotic orbits.  相似文献   

5.
Maxwell’s ring-type configuration (i.e. an N-body model where the ν = Ν − 1 bodies have equal masses and are located at the vertices of a regular ν-gon while the N-th body with a different mass is located at the center of mass of the system) has attracted special attention during the last 15 years and many aspects of it have been studied by considering Newtonian and post-Newtonian potentials (Mioc and Stavinschi 1998, 1999), homographic solutions (Arribas et al. 2007) and relative equilibrium solutions (Elmabsout 1996), etc. An equally interesting problem, known as the ring problem of (N + 1) bodies, deals with the dynamics of a small body in the combined force field produced by such a configuration. This is the problem we are dealing with in the present paper and our aim is to investigate the variations in the dynamics of the small body in the case that the central primary is also a radiating source and therefore acts on the particle with both gravitation and radiation. Based on the general outlines of Radzievskii’s model, we study the permitted and the existing trapping regions of the particle, its equilibrium locations and their parametric variations as well as the existence of focal points in the zero-velocity diagrams. The distribution of the characteristic curves of families of planar symmetric periodic orbits and their stability for various values of the radiation coefficient of the central body is additionally investigated.  相似文献   

6.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1, m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.  相似文献   

7.
We study numerically the asymmetric periodic orbits which emanate from the triangular equilibrium points of the restricted three-body problem under the assumption that the angular velocity ω varies and for the Sun–Jupiter mass distribution. The symmetric periodic orbits emanating from the collinear Lagrangian point L 3, which are related to them, are also examined. The analytic determination of the initial conditions of the long- and short-period Trojan families around the equilibrium points, is given. The corresponding families were examined, for a combination of the mass ratio and the angular velocity (case of equal eigenfrequencies), and also for the critical value ω = 2
, at which the triangular equilibria disappear by coalescing with the inner collinear equilibrium point L 1. We also compute the horizontal and the vertical stability of these families for the angular velocity parameter ω under consideration. Series of horizontal–critical periodic orbits of the short-Trojan families with the angular velocity ω and the mass ratio μ as parameters, are given.  相似文献   

8.
In this paper the effect of solar radiation pressure on the location and stability of the five Lagrangian points is studied, within the frame of elliptic restricted three-body problem, where the primaries are the Sun and Jupiter acting on a particle of negligible mass. We found that the radiation pressure plays the rule of slightly reducing the effective mass of the Sun and changes the location of the Lagrangian points. New formulas for the location of the collinear libration points were derived. For large values of the force ratio β, we found that at β=0.12, the collinear point L3 is stable and some families of periodic orbits can be drawn around it.  相似文献   

9.
It is proved that monoparametric families of periodic orbits of theN-body problem in the plane, for fixed values of all masses, exist in a rotating frame of reference whosex axis contains always two of the bodiesP 1 andP 2. A periodic motion of theN-body problem is obtained as a continuation ofN–2 symmetric periodic orbits of the circular restricted three-body problem whose periods are in integer dependence, by increasing the masses of the originallyN–2 massless bodiesP 3, ...,P k. The analytic continuation, for sufficiently small values of theN–2 bodiesP 3 ...P k and finite values for the masses ofP 1 andP 2 has been proved by the continuation method and the solution itself has been found explicitly to a linear approximation in the small masses. Also, the possible application of the above periodic orbits to the study of the Solar system and of stellar systems is mentioned.  相似文献   

10.
Chaos appears in various problems of Relativity and Cosmology. Here we discuss (a) the Mixmaster Universe model, and (b) the motions around two fixed black holes. (a) The Mixmaster equations have a general solution (i.e. a solution depending on 6 arbitrary constants) of Painlevé type, but there is a second general solution which is not Painlevé. Thus the system does not pass the Painlevé test, and cannot be integrable. The Mixmaster model is not ergodic and does not have any periodic orbits. This is due to the fact that the sum of the three variables of the system (α + β + γ) has only one maximum for τ = τm and decreases continuously for larger and for smaller τ. The various Kasner periods increase exponentially for large τ. Thus the Lyapunov Characteristic Number (LCN) is zero. The "finite time LCN" is positive for finite τ and tends to zero when τ → ∞. Chaos is introduced mainly near the maximum of (α + β + γ). No appreciable chaos is introduced at the successive Kasner periods, or eras. We conclude that in the Belinskii-Khalatnikov time, τ, the Mixmaster model has the basic characteristics of a chaotic scattering problem. (b) In the case of two fixed black holes M1 and M2 the orbits of photons are separated into three types: orbits falling into M1 (type I), or M2 (type II), or escaping to infinity (type III). Chaos appears because between any two orbits of different types there are orbits of the third type. This is a typical chaotic scattering problem. The various types of orbits are separated by orbits asymptotic to 3 simple unstable orbits. In the case of particles of nonzero rest mass we have intervals where some periodic orbits are stable. Near such orbits we have order. The transition from order to chaos is made through an infinite sequence of period doubling bifurcations. The bifurcation ratio is the same as in classical conservative systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We studied systematically cases of the families of non-symmetric periodic orbits in the planar restricted three-body problem. We took interesting information about the evolution, stability and termination of bifurcating families of various multiplicities. We found that the main families of simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals around a focal point-terminating point in x- at which the Jacobi constant is C  = 3 and their periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family approaches asymptotically its termination point infinite changes of stability to instability and vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral characteristics appear and each one of them generates infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate large chaotic regions near the corotation points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating family, which approaches its focal point, infinite loops, one inside the other, surrounding the unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points L4, L5 with infinite period. This is a new mechanism that produces very large degree of stochasticity. These conclusions help us to comprehend better the motions around the points L4 and L5 of Lagrange.  相似文献   

12.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

13.
We derive general results on the existence of stationary configurations for N co-orbital satellites with small but otherwise arbitrary masses m i , revolving on circular and planar orbits around a massive primary. The existence of stationary configurations depends on the parity of N. If N is odd, then for any arbitrary angular separation between the satellites, there always exists a set of masses (positive or negative) which achieves stationarity. However, physically acceptable solutions (m i > 0 for all i) restrict this existence to sub-domains of angular separations. If N is even, then for given angular separations of the satellites, there is in general no set of masses which achieves stationarity. The case N=3 is treated completely for small arbitrary satellite masses, giving all the possible solutions and their stability, to within our approximations.  相似文献   

14.
We describe and comment the results of a numerical exploration on the evolution of the families of periodic orbits associated with homoclinic orbits emanating from the equilateral equilibria of the restricted three body problem for values of the mass ratio larger than μ 1. This exploration is, in some sense, a continuation of the work reported in Henrard [Celes. Mech. Dyn. Astr. 2002, 83, 291]. Indeed it shows how, for values of μ. larger than μ 1, the Trojan web described there is transformed into families of periodic orbits associated with homoclinic orbits. Also we describe how families of periodic orbits associated with homoclinic orbits can attach (or detach) themselves to (or from) the best known families of symmetric periodic orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The orbits of real asteroids around the Lagrangian points L4 and L 5of Jupiter with large inclinations (i > 20°) were integrated for 50 Myrs. We investigated the stability with the aid of the Lyapunov characteristic exponents (LCE) but tested also two other methods: on one hand we integrated four neighbouring orbits for each asteroid and computed the maximum distance in every group, on the other hand we checked the variation of the Delaunay element H of the asteroid. In a second simulation – for a grid of initial eccentricity versus initial inclination – we examined the stability of the orbits around both Lagrangian points for 20° < i < 55° and 0.0 < e < 0.20. For the initial semimajor axes we have chosen the one ofJupiter(a = 5.202 AU). We determined the stability with the aid of the LCEs and also the maximum eccentricity of the orbits during the whole integration time. The region around L4 turned out to be unstable for large inclinations and eccentricities (i > 55° and e > 0.12). The stable region shrinks for orbits around L5: we found that they become unstable already for i > 45° and e > 0.10. We interpret it as a first hint why we observe more Trojans around the leading Lagrangian point. The results confirm the stability behaviour of the real Trojans which we computed in the first part of the paper.  相似文献   

16.
When μ is smaller than Routh’s critical value μ 1 = 0.03852 . . . , two planar Lyapunov families around triangular libration points exist, with the names of long and short period families. There are periodic families which we call bridges connecting these two Lyapunov families. With μ increasing from 0 to 1, how these bridges evolve was studied. The interval (0,1) was divided into six subintervals (0, μ 5), (μ 5μ 4), (μ 4μ 3), (μ 3μ 2), (μ 2μ 1), (μ 1, 1), and in each subinterval the families B(pL, qS) were studied, along with the families B(qS, qS′). Especially in the interval (μ 2μ 1), the conclusion that the bridges B(qS, qS′) do not exist was obtained. Connections between the short period family and the bridges B(kS, (k + 1)S) were also studied. With these studies, the structure of the web of periodic families around triangular libration points was enriched.  相似文献   

17.
In this paper, we study the existence of libration points and their linear stability when the three participating bodies are axisymmetric and the primaries are radiating, we found that the collinear points remain unstable, it is further seen that the triangular points are stable for 0<μ<μ c , and unstable for where , it is also observed that for these points the range of stability will decrease. In addition to this we have studied periodic orbits around these points in the range 0<μ<μ c , we found that these orbits are elliptical; the frequencies of long and short orbits of the periodic motion are affected by the terms which involve parameters that characterize the oblateness and radiation repulsive forces. The implication is that the period of long periodic orbits adjusts with the change in its frequency while the period of short periodic orbit will decrease.  相似文献   

18.
We analytically prove the existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar pairwise symmetric equal mass four-body problem. This is an extension of our previous proof of the analytic existence of a symmetric periodic simultaneous binary collision orbit in a regularized planar fully symmetric equal mass four-body problem. We then use a continuation method to numerically find symmetric periodic simultaneous binary collision orbits in a regularized planar pairwise symmetric 1, m, 1, m four-body problem for m between 0 and 1. Numerical estimates of the the characteristic multipliers show that these periodic orbits are linearly stability when 0.54 ≤ m ≤ 1, and are linearly unstable when 0 < m ≤ 0.53.  相似文献   

19.
In this paper, we determine series of horizontally critical symmetric periodic orbits of the six basic families, f,g,h,i,l,m, of the photogravitational restricted three-body problem, and computetheir vertical stability. We restrict our study in the case where only the first primary is radiating, namely q 1≠1 andq 2=1. We also compare our results with those of Hénon and Guyot (1970) so as to study the effect of radiation to this kind of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We present five families of periodic solutions of Hill’s problem which are asymmetric with respect to the horizontal ξ axis. In one of these families, the orbits are symmetric with respect to the vertical η axis; in the four others, the orbits are without any symmetry. Each family consists of two branches, which are mirror images of each other with respect to the ξ axis. These two branches are joined at a maximum of Γ, where the family of asymmetric periodic solutions intersects a family of symmetric (with respect to the ξ axis) periodic solutions. Both branches can be continued into second species families for Γ → − ∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号