首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper summarizes ion meaurements in the energy range 0.1–30keV observed during the campaigns “Substorm Phenomena” and “Porcupine”. For a clear survey of the physical processes during extraordinary events, sometimes ion meaurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation.

Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 RE. Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. Each of the examples was observed during different flights. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities.  相似文献   


2.
Simultaneous measurements of hot boundary layer plasma from PROGNOZ-7 and particle precipitation from the TIROS/NOAA satellite in nearly magnetically conjugate regions have been used to study the dynamo process responsible for the formation of high latitude, early afternoon, auroral arcs.

Characteristic for the PROGNOZ-7 observations in the dayside boundary layer at high latitudes is the frequent occurrence of regions with injected magnetosheath plasma embedded in a “halo” of antisunward flowing magnetosphere plasma. The injected magnetosheath plasma have several features which indicate that it also acts as a local source of EMF in the boundary layer. The process resembles that of a local MHD dynamo driven by the excess drift velocity of the injected magnetosheath plasma relative to the background magnetospheric plasma.

The dynamo region is capable of driving field-aligned currents that couple to the ionosphere, where the upward current is associated with the high latitude auroral arcs.

We demonstrate that the large-scale morphology as well as the detailed data intercomparison between PROGNOZ-7 and TIROS-N both agree well with a local injection of magnetosheath plasma into the dayside boundary layer as the main dynamo process powering the high-latitude, early afternoon auroral arcs.  相似文献   


3.
The POLAR 5 sounding rocket, launched from Andøya, Norway, on February 1, 1976, was of the “mother-daughter” configuration.A rocket-borne electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with a maximum current of 130 mA and electron energies up to 10 kev.Using a photometer the luminescence at 391.4nm produced by electrons colliding with ambient nitrogen molecules was studied. The observed light at 391.4 nm consisted of low background, with occasional flashes due to the natural auroral excitations, and intense sparkles when the electron beam was emitted.Below 130 km the light observed during beam injection can be explained by excitations of ambient N2 due to high energy beam electrons.In the altitude range from 150 km to apogee at 220 km, the observed light level during beam emission is fairly constant and much larger than that produced by the high energy beam electrons. A possible source of this light is the excitation of ambient N2 by an enhanced population of low energy electrons, created by the presence of a beam plasma discharge in the vicinity of the “daughter” payload.  相似文献   

4.
On 9 December 1981 rocket borne energetic electron spectrometers measured energy spectra over a stable auroral arc. An associated microprocessor accurately timed the electron detection pulses to calculate auto-correlation functions for each of 16 energy levels between 300 eV and 19 keV.Energy spectra measured up to 230 km altitude contained a secondary peak around 5 keV, corresponding to the auroral beam. Derived velocity distribution functions contain a plateau or table extending round from 0 to 90° pitch angle with a weak positive gradient (+ ve d?(ν)/dν) near zero pitch angle. Autocorrelation functions made at energy levels corresponding to the location of the positive gradient showed the electrons of this region of phase space to be strongly modulated (~ 30%) at a frequency of 2.65 MHz or approximately at twice the electron gyrofrequency.This observation provides the most direct measurement of the auroral beam/ionospheric plasma interaction to date. It provides hard experimental evidence to support the theories which have previously predicted that a major wave-particle interaction responsible for the evolution of the auroral distribution function occurs at heights where the upper hybrid frequency equals twice the local electron gyrofrequency.  相似文献   

5.
Electric and magnetic fields and auroral emissions have been measured by the Intercosmos-Bulgaria-1300 satellite on 10–11 January 1983. The measured distributions of the plasma drift velocity show that viscous convection is diminished in the evening sector under IMF By < 0 and in the morning sector if IMF By > 0. A number of sun-aligned polar cap arcs were observed at the beginning of the period of strongly northward IMF and after a few hours a θ-aurora appeared. The intensity of ionized oxygen emission [O+(2P), 7320 Å] increased significantly reaching up to several kilo-Rayleighs in the polar cap arc. A complicated pattern of convection and field-aligned currents existed in the nightside polar cap which differed from the four-cell model of convection and NBZ field-aligned current system. This pattern was observed during 12 h and could be interpreted as six large scale field-aligned current sheets and three convective vortices inside the polar cap. Sun-aligned polar cap arcs may be located in regions both of sunward and anti-sunward convection. Structures of smaller spatial scale correspond to the boundaries of hot plasma regions related to polar cap arcs. Obviously these structures are due to S-shaped distributions of electric potential. Parallel electric fields in these S-structures provide electron acceleration up to 1 keV at the boundaries of polar cap arcs. The pairs of field-aligned currents correspond to those S-structures: a downward current at the external side of the boundary and an upward current at the internal side of it.  相似文献   

6.
Results from an ionoipheric founding rocket of the “mother-daugther” type, equipped with an 8 keV electron accelerator, is reported. The emphasis is on the results obtained from the three plasma probes which monitored both the electron- and the ion-population. It is shown that no significant increase of the electron density was observed during the beam injections. However, the electron temperature varied rapidly during these pulses. The influence of the vehicle charging on the measurements is also discussed.  相似文献   

7.
Characteristics of the supersonic auroral arcs within the 0905 UT 2 April 1973 substorm were determined using data from (1) all-sky cameras; (2), surface magnetometers, (3) multispectral scanning photometers, (4) 30MHz riometers, (5) Chatanika incoherent-scatter radar, (6) Homer auroral radar, and (7) infrasonic microphone arrays at College and Stevens Village in Alaska. These data were analyzed to determine the properties of an auroral electrojet arc that generates auroral infrasonic waves (AIW).

An arc that was show to be the source of an AIW was found to have the following characteristics: (1) a velocity of 500 m/sec traveling from an azimuth of 350°; (2) an intensity in 4278 A of 26 Kr, (3) a maximum electron density of 2.8 × 106 el/cm6 at 100km height, (4) an equivalent westward line current of 2.8 × 106 A, (5) orientation of ΔH parallel to the AIW direction of travel and perpendicular to the arc's long axis, (6) a characteristic energy of the primary auroral electron spectrum of 3.0keV, and (7) an energy deposition rate for the auroral pdarticles of 100 erg/cm2 sec.  相似文献   


8.
A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (δn/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two (δn/n) turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Cs) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range—an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this.  相似文献   

9.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

10.
11.
W. K. Yip 《Solar physics》1973,30(2):513-526
The radio emissions caused by electron streams in a non-isothermal plasma are studied quantitatively. It is proposed that conversion of the stream-excited plasma waves into electromagnetic waves by scattering on the thermal fluctuations at nonisothermal sonic oscillation frequency is the origin of the emission of the split-pair burst near the plasma frequency. The occurrence of the split-pair bursts near the second harmonic of the plasma frequency can be due to combination scattering of the stream-excited plasma waves by electron density fluctuations which are produced by the scattered plasma waves. With a streamer model in which the electron densities are two times those in Newkirk's model, both the observed frequency splitting and the rate of drift of the split pair can be explained as the result of plasma radiation caused by a stream of 10 keV electrons. A tentative model for the split-pair emission is suggested.  相似文献   

12.
The occurrence of the third (z-ray) component of the F2-trace on ionograms is investigated at high- and mid-latitudes. Diurnal variations show a systematic shift, with magnetic inclination, of the time of maximum occurrence. Seasonal variations show a winter maximum, and an inverse sunspot-cycle relationship exists. Maximum occurrence appears between a magnetic inclination of 70° and 80° with a fall-off either side.

Evidence is presented to suggest a z-ray association with “Spread-F” fronts, and a possible mechanism for the recording of the z-ray trace at the transmitter site is described. This involves longitudinal propagation of the o-mode at its normal reflection level, coupling at this point, and ultimate reflection for the z-ray mode as a result of sloping ionization contours belonging to “Spread-F” fronts extending in directions perpendicular to the magnetic meridian.

An association with V.L.F. emissions (“dawn-chorus”) is discussed.  相似文献   


13.
Height profiles of auroral emissions at 3914 Å, 4861 Å, and 5577 Å were obtained in two rocket flights through medium intensity stable aurora. The 3914 Å N2+ integral intensity data were compared with intensity variations predicted by an auroral model for a range of primary electron energy spectra. The observed profiles for the two flights were well reproduced respectively by a 5.6 keV mono-energtic flux and by a flux with an exponential spectrum cutting off around 12 to 15 keV. The data for 5577 Å (available only above 120 km) bear a constant ratio to that for 3914 Å. The emission profiles derived for 3914 Å, peak at 115 and 107 km respectively.  相似文献   

14.
It is shown that electrostatic fields parallel (E11) to the geomagnetic field cannot be the major mechanism that accelerates charged particles to auroral energies. Principal arguments are that electron and proton precipitation occur simultaneously, and also that precipitated electrons with energies less than 100 eV are found to accompany the electrons with energies of 1–10 keV that excite auroral luminosity. It is further shown that essentially all the ambient plasma in an entire tube of flux is required to sustain this intense low-energy precipitation, and this places a severe constraint on any replenishment process. It is found that generally the upper limit to (E11) throughout the auroral regions of the ionosphere and magnetosphere is of order 10 μV/m and it may be appreciably less. Relevant measurements are reviewed briefly. It is concluded that while there may occasionally be significant E11 fields, they play only a minor role-if any-in auroral phenomena.  相似文献   

15.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

16.
With an instrument on board the Japanese satellite EXOS-A electron temperatures of more than 1000 K above the “normal” values have been observed in the night-time topside F-region above the geographic region where the total magnetic field is below 20000 nT. Simultaneously enhanced wave emissions on 45 kHz, 2 MHz and 3 MHz were found and an increase in particle precipitation. The observations are described in detail and several mechanism are discussed which can explain the results.  相似文献   

17.
In this paper the observed 1.4–1.6 s quasi-periodic oscillations in the spike radiation of the microwave outburst of 1981 May 16 are analysed in teras of MHD waves. We point out that the fast magnetoacoustic waves (“sausage” mode) propagating inside and outside a loop can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. The growth rate of electron-cyclotron-maser instability is then affected to give rise to the quasi-periodic oscillations. Quantitative estimates of relevant physical parameters are given.  相似文献   

18.
Energetic electron injection events result in the arrival of loss-cone distributions of electrons at energies of a few keV close to the plasmapause at local midnight. These distributions favour the growth of strong electrostatic waves with some conversion to electromagnetic nonthermal continuum emissions near to the geomagnetic equator.GEOS2 located at the geostationary orbit (L = 6.6, 3.3° South) has observed these continuum emissions for a number of electron injection events. Their unique frequency structure provides a measurement of the geomagnetic field strength at the source and hence its radial position, while direction finding measurements at GEOS2 complete the source location determination.Measurements of source locations as a function of time after the start of an electron injection event, yield typical inwards motions of 1REh?1. In this way the emissions provide a remote sensing of the plasmapause location from the geostationary orbit.  相似文献   

19.
During the break-up phase of two strong auroral events, emissions of short duration on the wavelength of He I, 5876 Å have been observed. These records are accurate within 0.5 Å and intensities of up to 120 R have been measured. This high value is not consistent with the theoretical limit suggested by other authors. Simultaneous observations of H, 6563 Å show that the He I and H emissions are not closely related to each other with time, which may be one reason for explaining the discrepancy with the predicted intensity derived from observed ratios of He++/H+ in the solar wind. The emission on 5876 Å has only been detected at the lowest border of very intense ray bundles towards north but not yet in auroral arcs and diffuse glow. It is suggested that two principally different helium events in aurora may be observable, one resulting in a low level He emission lasting for longer time and another in a stronger He emission of short duration. The observational difficulties caused by the presence of OH bands are discussed.  相似文献   

20.
A sounding rocket, launched into the expansive phase of an auroral substorm, measured bursts of electric field oscillations with a typical period of one second and a magnitude exceeding 20 mV/m. The oscillations appear to be due to an MHD wave propagating along the magnetic field. The bursts were observed as the sounding rocket passed over the southern border of an auroral arc. The southern border coincided with an increase in 1–5 keV electron flux and an increase in field-aligned current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号