首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A sediment layer (43 cm thick) and surface sediments (5 cm thick) in a submarine limestone cave (31 m water depth) on the fore-reef slope of Ie Island, off Okinawa mainland, Japan, were examined by visual, mineralogical and geochemical means. Oxygen isotope analysis was performed on the cavernicolous micro-bivalve Carditella iejimensis from both cored sediments and surface sediments, and the water temperature within the cave was recorded for nearly one year. These data show that: (1) water temperature within the cave is equal to that at 30 m deep in the open sea; (2) the biotic and non-biotic environments within the cave have persisted for the past 2000 years; (3) mud-size carbonate detritus is a major constituent of the submarine-cave deposit, and may have come mainly from the suspended carbonate mud produced on the emergent Holocene reef flat over the past two millennia; (4) the δ18O-derived temperature (Tδ18O) of C. iejimensis suggests that the species grows between April and July; (5) the Tδ18O of C. iejimensis from cored sediments implies that there were two warmer intervals, at AD 340 ± 40 and AD 1000 ± 40, which correspond to the Roman Warm Period and Medieval Warm Period, respectively. These suggest that submarine-cave sediments provide unique information for Holocene reef development. In addition, oxygen isotope records of cavernicolous C. iejimensis are a useful tool to reconstruct century-scale climatic variability for the Okinawa Islands during the Holocene.  相似文献   

2.
The climatological signal of δ18O variations preserved in ice cores recovered from Puruogangri ice field in the central Tibetan Plateau (TP) was calibrated with regional meteorological data for the past 50 years. For the period AD 1860–2000, 5-yearly averaged ice core δ18O and a summer temperature reconstruction derived from pollen data from the same ice core were compared. The statistical results provide compelling evidence that Puruogangri ice core δ18O variations represent summer temperature changes for the central TP, and hence regional temperature history during the past 600 years was revealed. A comparison of Puruogangri ice core δ18О with several other temperature reconstructions shows that broad-scale climate anomalies since the Little Ice Age occurred synchronously across the eastern and southern TP, and the Himalayas. Common cold periods were identified in the 15th century, 1625–1645 AD, 1660–1700 AD, 1725–1775 AD, 1795–1830 AD, 1850–1870 AD, 1890–1920 AD, 1940–1950 AD, and 1975–1985 AD. The period 1725–1775 AD was one of the most prolonged cool periods during the past 400 years and corresponded to maximum Little Ice Age glacier advance of monsoonal temperate glaciers of the TP.  相似文献   

3.
We present Globigerinoides ruber, G. sacculifer and Neogloboquadrina dutertrei oxygen isotope records from northwestern subtropical Atlantic Site 1058 spanning the mid Pleistocene ( 600 to 400 ka). The high temporal resolution of these records ( 800 yr) allows us to compare millennial-scale climate signals during one of the most extreme glacial periods of the Pleistocene (Marine Isotope Stage (MIS) 12) to an earlier, less extreme glacial (MIS 14), as well as to two full interglacial intervals (MIS 13 and MIS 15). We observe excellent agreement in the timing and amplitude of variations between the surface-most dwelling species G. ruber and Northern Hemisphere insolation during the two interglacial periods. There is some expression of Northern Hemisphere insolation during glacial MIS 14; however, during the more extreme glacial MIS 12 Northern Hemisphere insolation patterns are not apparent in any of the planktonic foraminiferal δ18O records. Insolation remains relatively high, but δ18O values increase toward the characteristic δ18O maximum of MIS 12 in all three of the records. On the millennial-scale, all three species display their highest amplitude δ18O variations (with a period between 4–6 kyr) during glacial MIS 12. Suborbital-scale variability is also statistically significant during glacial MIS 14, but the amplitude is smaller. These results support hypotheses linking millennial-scale climate fluctuations to the extent of continental glaciation. We propose that the relatively high degree of sea surface instability during one of the most extreme glacial periods of the Pleistocene arises from the competing effects of strong atmospheric winds related to the presence of a large ice sheet to the north and persistently high incident solar radiation during this interval of time.  相似文献   

4.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

5.
Hydrographic changes in the NW Arabian Sea are mainly controlled by the monsoon system. This results in a strong seasonal and vertical gradient in surface water properties, such as temperature, nutrients, carbonate chemistry and the isotopic composition of dissolved inorganic carbon (δ13CDIC). Living specimens of the planktic foraminifer species Globigerina bulloides and Globigerinoides ruber, were collected using depth stratified plankton tows during the SW monsoon upwelling period in August 1992 and the NE monsoon non-upwelling period in March 1993. We compare their distribution and the stable isotope composition to the seawater properties of the two contrasting monsoon seasons. The oxygen isotope composition of the shells (δ18Oshell) and vertical shell concentration profiles indicate that the depth habitat for both species is shallower during upwelling (SW monsoon period) than during non-upwelling (NE monsoon period). The calcification temperatures suggest that most of the calcite is precipitated at a depth level just below the deep chlorophyll maximum (DCM), however above the main thermocline. Consequently, the average calcification temperature of G. ruber and G. bulloides is lower than the sea surface temperature by 1.7±0.8 and 1.3±0.9 °C, respectively. The carbon isotope composition of the shells (δ13Cshell) of both species differs from the in situ δ13CDIC found at the calcification depths of the specimens. The observed offset between the δ13Cshell and the ambient δ13CDIC results from (1) metabolic/ontogenetic effects, (2) the carbonate chemistry of the seawater and, for symbiotic G. ruber, (3) the possible effect of symbionts or symbiont activity. Ontogenetic effects produce size trends in Δδ13Cshell–DIC and Δδ18Oshell–w: large shells of G. bulloides (250–355μm) are 0.33‰ (δ13C) and 0.23‰ (δ18O) higher compared to smaller ones (150–250 μm). For G. ruber, this is 0.39‰ (δ13C) and 0.17‰ (δ18O). Our field study shows that the δ13Cshell decreases as a result of lower δ13CDIC values in upwelled waters, while the effects of the carbonate system and/or temperature act in an opposite direction and increase the δ13Cshell as a result lower [CO32−] (or pH) values and/or lower temperature. The Δδ13Cshell–DIC [CO32−] slopes from our field data are close to those reported literature from laboratory culture experiments. Since seawater carbonate chemistry affects the δ13Cshell in an opposite sense, and often with a larger magnitude, than the change related to productivity (i.e. δ13CDIC), higher δ13Cshell values may be expected during periods of upwelling.  相似文献   

6.
Northward flowing coastal currents along the western margin of India during winter–spring advect low-salinity Bay of Bengal water in to the Eastern Arabian Sea producing a distinct low-salinity tongue, the strength of which is largely governed by the freshwater flux to the bay during summer monsoons. Utilizing the sedimentary records of δ18OG. sacculifer, we reconstructed the past salinity-gradient within that low-salinity tongue, which serves as a proxy for the variation in freshwater flux to the Bay of Bengal and hence summer monsoon intensity.The north–south contrast in the sea level corrected (residual)-δ18OG. sacculifer can be interpreted as a measure of surface salinity-contrast between those two locations because the modern sea surface temperature and its past variation in the study region is nearly uniform. The core-top residual-δ18OG. sacculifer contrast of 0.45‰ between the two cores is assumed to reflect the modern surface salinity difference of 1 psu and serves as a calibration for past variations.The residual-δ18OG. sacculifer contrast varies between 0.2‰ at 75 ky B.P. (i.e., late-Marine Isotope Stage 5) and 0.7‰ at 20 ky B.P. (i.e., Last Glacial Maximum), suggesting that the overall salinity difference between the northern- and southern-end of the low-salinity tongue has varied between 0.6 and 1.6 psu. Considerably reduced difference during the former period than the modern suggests substantially intensified and northward-extended low-salinity tongue due to intense summer monsoons than today. On the other hand, larger difference (1.6 psu) during the latter period indicates that the low-salinity tongue was significantly weakened or withdrawn due to weaker summer monsoons. Thus, the salinity-gradient in the eastern Arabian Sea low-salinity tongue can be used to understand the past variations in the Indian summer monsoons.  相似文献   

7.
A palynological study of oil exploration wells in the Gippsland Basin southeastern Australia has provided a record of southern high latitude climate variability for the last 12 million years of the Cretaceous greenhouse world. During this time, the vegetation was dominated by a cool to temperate flora of Podocarpaceae, Proteaceae and Nothofagidites spp. at a latitude of 60°S. Milankovitch forced cyclic alternations from drier to wetter climatic periods caused vegetation variability from 72 to 77 Ma. This climate change was probably related to the waxing and waning of ephemeral (100 ky) small ice sheets in Antarctica during times of insolation minima and maxima. Drying and cooling after 72 Ma culminated from 68 to 66 Ma, mirroring trends in global δ18O data. Quantitative palynofloral analyses have the potential to provide realistic proxies for small-scale climate variability in the predominantly ice-free Late Cretaceous.  相似文献   

8.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   

9.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   

10.
The loess-paleosol sequences of the last 1.2 Ma in China have recorded two kinds of climate extremes: the strongly developed S4, S5-1 and S5-3 soils (corresponding to the marine δ18O stages 11, 13, and 15, respectively) as evidence of three episodes of great warmth and two coarse-grained loess units (L9 and L15, corresponding to the marine δ18O stages 22, 23, 24 and 38, respectively) which indicate severest glacial conditions. The climatic and geographical significance of these events are still unclear, and their cause remains a puzzle.Paleopedological, geochemical and magnetic susceptibility data from three loess sections (Xifeng, Changwu and Weinan) suggest that the S4, S5-1 and S5-3 soils were formed under sub-tropical semi-humid climates with a tentatively estimated mean annual temperature (MAT) of at least 4–6°C higher and a mean annual precipitation (MAP) of 200–300 mm higher than for the present-day, indicating a much strengthened summer monsoon. The annual rainfall was particularly accentuated for the southern-most part of the Loess Plateau, suggesting that the monsoon rain belt (the contact of the monsoonal northward warm-humid air mass with the dry-cold southward one) might have stood at the southern part of the Plateau for a relatively long period each year. The loess units L9 and L15 were deposited under semi-desertic environments with a tentatively estimated MAT and MAP of only about 1.5–3°C and 150–250 mm, indicating a much strengthened winter monsoon, and that the summer monsoon front could rarely penetrate into the Loess Plateau region.Correlation with marine carbon isotope records suggests that these climate extremes have large regional, even global, significance rather than being local phenomena in China. They match the periods with greatest/smallest Atlantic–Pacific δ13C gradients, respectively, indicating their relationships with the strength of Deep Water (NADW) production in the North Atlantic. These results suggest that the monsoon climate in the Loess Plateau region was significantly linked with the North Atlantic thermohaline circulation on timescales of 104 years.  相似文献   

11.
In the present paper, we report on micropaleontological (dinocysts) and isotopic (18O and 13C in foraminifers) analyses performed in Holocene sediments from fifteen cores raised from the central and northwest North Atlantic. Sea-surface temperature (SST), sea-surface salinity (SSS), thus potential density, and sea-ice cover are reconstructed based on dinocyst assemblages. After proper calibration, oxygen isotope data on the mesopelagic foraminifer Neogloboquadrina pachyderma left coiled (Npl) are converted into potential density values deeper in the water column, thus allowing documentation of vertical density gradients and identification of intervals favourable for winter convection to occur with formation of intermediate Labrador Sea Water (LSW). The most important findings from this study include: (1) the existence of an early-mid Holocene thermal optimum with positive anomalies up to 6 °C above present along the main SW–NE axis of the North Atlantic Current, but no significant SST maximum at most sites along eastern Canadian margins; (2) the evidence for larger than present amplitude of annual SSTs during the early Holocene, thus for a stronger seasonality; (3) minimum sea-ice cover from 11 500 to 6000 cal years BP, and a slight increase of sea-ice variability, and average seasonal duration of 0.5 to 1 month per year afterwards; (4) variable SSS during the entire Holocene, suggesting changes in the routing and rates of freshwater–meltwater discharges from the Arctic and eastern Canada; (5) the setting of conditions compatible with LSW production after 8 ka only, and likely a more steady production during the late Holocene; (6) an overall trend for a potential density increase of the Labrador Sea, throughout the Holocene, matching a decreasing trend eastward, thus suggesting a progressive enhancement of the western branch of the Atlantic Meridional Overturning with respect to its northeastern route; and (7) indication of maximum production and fast dispersal of LSW in the entire North Atlantic during recent times only, as suggested by linearly-converging δ18O-values of Npl from all sites, towards its modern relatively homogeneous composition ( 2.5/2.6‰). The overall picture of the Holocene North Atlantic arising from this study is that of a basin marked by a strong regionalism with large discrepancies in hydrographical trends and high frequency oscillations, at least partly controlled by freshwater–meltwater routes and rates of export from the Arctic.  相似文献   

12.
Reconstruction of Mediterranean sea level fields for the period 1945–2000   总被引:1,自引:1,他引:0  
The distribution of sea level in the Mediterranean Sea is recovered for the period 1945–2000 by using a reduced space optimal interpolation analysis. The method involves estimating empirical orthogonal functions from satellite altimeter data spanning the period 1993–2005 that are then combined with tide gauge data to recover sea level fields over the period 1945–2000. The reconstruction technique is discussed and its robustness is checked through different tests. For the altimetric period (1993–2000) the prediction skill is quantified over the whole domain by comparing the reconstructed fields with satellite altimeter observations. For past times the skill can only be tested locally, by validating the reconstruction against independent tide gauge records. The reconstructed distribution of sea level trends for the period 1945–2000 shows a positive peak in the Ionian Sea (up to 1.5 mm yr− 1) and a negative peak of − 0.5 mm yr− 1 in a small area to the south-east of Crete. Positive trends are found nearly everywhere, being larger in the western Mediterranean (between 0.5 and 1 mm yr− 1) than in the eastern Mediterranean (between 0 and 0.5 mm yr− 1). The estimated rate of mean sea level rise for the period 1945–2000 is 0.7 ± 0.2 mm yr− 1, i.e. about a half of the rate estimated for global mean sea level. These overall results do not appear to be very sensitive to the distribution of tide gauges. The poorest results are obtained in open-sea regions with intense mesoscale variability not correlated with any tide gauge station, such as the Algerian Basin.  相似文献   

13.
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based δ18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36.9±3.3 ka at 0.45 m below sea floor and correlate suspected glacial–interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The δ18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early–mid-Pleistocene (0.9–1.38 Ma). An increase in δ18O values after 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The δ18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial–interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16–21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs.  相似文献   

14.
Accumulation of organic matter (OM) was studied in four ombrotrophic peat bogs in Finland: Harjavalta (vicinity of a Cu–Ni smelter), Outokumpu (near a closed Cu–Ni mine), Alkkia (Ni-treated site) and Hietajärvi (a pristine site). At each sampling site, two peat cores (15 × 15 × 100 cm) were taken. Age-dating of peat was determined using 210Pb method (CRS model). The local annual temperature sum and precipitation for the past 125 years were modeled. The objective was to compare recent net accumulation rates of heavy metal polluted ombrotrophic peat bogs with those of a pristine bog, and to study the relationship between weather and net accumulation rates. Based on 210Pb age-dating, the upper 16-cm peat layer at Harjavalta, 35 cm at Outokumpu and 25 cm at Hietajärvi represents 125 years of peat formation, yielding the following average peat accumulation rates: Harjavalta 1.3 mm year− 1, Outokumpu 2.8 mm year− 1 and Hietajärvi 2.0 mm year− 1. At the Alkkia site, the Ni treatment in 1962 had completely stopped the peat accumulation. Net accumulation rates were related to precipitation at Outokumpu, Harjavalta and Hietajärvi sites. In addition, emissions released from the nearby located Cu–Ni smelter could have affected negatively net OM accumulation rate at Harjavalta site.  相似文献   

15.
We investigate late glacial and Holocene climate change recorded in Lake Baikal using the oxygen isotope composition of diatom silica (δ18ODIAT). Evaporation from the lake is minor, and the temperature fractionations of δ18O are unable to explain variations in the δ18ODIAT record alone. Isotopically, low meltwater input from glaciers may have some influence on δ18ODIAT, but the assumed periods of climatic warming and wastage do not coincide with large shifts in δ18ODIAT. There is a gradual oxygen isotope lowering from 27.0‰ to 20.6‰ over the late glacial, while, during the Holocene, δ18ODIAT values return to relatively high values. Previous studies of the modern oxygen and hydrogen isotope composition of Lake Baikal's inputs reveal that fluvial input to the lake's North Basin are isotopically lower than fluvial input from South Basin rivers. This north–south gradient of river δ18O and δD is mainly due to the greater input from isotopically low winter precipitation in the north and isotopically higher summer precipitation in the south. As a result, the δ18ODIAT record from Lake Baikal can at least in part be explained by varying input from these sources related to seasonal changes in precipitation. Changes in atmospheric conditions may have a role in altering seasonality and the distribution of precipitation over Lake Baikal's catchment. A feedback mechanism is well known linking higher Eurasian spring snow cover extent (ESSC) to the development of anticyclonic conditions and low precipitation the following summer in the areas south of Lake Baikal. A simultaneous increase in the importance of depleted water (snowmelt) input from the north and decreased enriched summer precipitation in the south is needed to explain depletions in δ18O of lake water and subsequently δ18ODIAT during colder periods. The opposite of this situation is required to enrich lake water during warmer periods. The analysis of δ18O from diatom silica is a useful proxy for environmental change, especially in lakes, like Lake Baikal, where carbonates are absent or diluted. However, analysis must be based on near pure diatom samples as even trace amounts of silt can have a dominating effect on δ18ODIAT values.  相似文献   

16.
Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal (“internal”) moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 106 m3 of ice mass (0.59 ± 0.02 × 106 m3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.  相似文献   

17.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   

18.
The hydrographic changes in the western tropical South Atlantic during the last 30 kyr were reconstructed based in the faunal and isotopic analyses of planktonic foraminifera of three cores taken along the Brazilian Continental Margin between 14°S and 25°S. The application of the SIMMAX–MAT method on faunal counts data provided the sea surface temperature estimates. Sea surface salinity estimates were based on the oxygen isotope composition of Globigerinoides ruber (white). Additionally, the abundance record of the planktonic foraminifera Globorotalia truncatulinoides (right) was used as a proxy for vertical mixing of surface waters. Sea surface temperature estimates suggest a relative stability of the area during the last 30 kyr. However, significant changes in the isotopic composition of G. ruber (white) suggest that the isotopic signal is dominated by the influence of sea surface salinity changes. The observed salinity changes are related to both the local hydrological balance and global circulation. Orbital forcing and sea surface salinity changes were responsible for considerable changes in the stability of the upper water column and consequently in the depth of the mixed layer, as indicated by the abundance record of G. truncatulinoides (right).  相似文献   

19.
It is now well accepted that surface processes provide a critical feedback on the surface tectonic deformation, whatever it is, orogenic building or basin evolution. However, the idea that the influence of these processes may go below the crustal levels, is less common. In this preliminary study, we use coupled thermo-mechanical numerical models to investigate the possible influence of surface processes on the styles of continental collision, in particular, continental subduction. For that, we further exploit the recent successful model of continental subduction of the early stages of India–Asia collision by Toussaint et al. [Toussaint G., Burov, E., and J.-P. Avouac, Tectonic evolution of a continental collision zone: a thermo-mechanical numerical model, Tectonics, 23, TC6003, doi:10.1029/2003TC001604, 2004b.]. On the example of India–Asia-like settings, we show that not only the surface topography but also the total amount of subduction may largely vary as function of denudation rate (controlled by the coefficient of erosion, k). Erosion provides a dynamic discharge of the hanging wall of the major thrust zone, whereas the sedimentation increases loading on the footwall and this helps down-thrusting of the lower plate. Both processes reduce the resistance of the major thrust and subduction channel to subduction. However, very strong or very slow erosion/sedimentation enhance the possibility of plate coupling and promote whole-scale thickening or buckling. The maximal amount of subduction is thus achieved for some intermediate values of erosion rates when the tectonic uplift rate is fine-balanced by the denudation rate. In our case the optimal balance is reached for the values of k on the order of 3000 m2/yr. We then extended our model beyond the conditions of India–Asia collision, in terms of the tested range of k and convergence rates. The experiments suggest that for provided settings, both extra slow (k < 50–100 m2/yr) and extra rapid erosion (k > 6000–8000 m2/yr) limit, by up to 50%, the total amount of subduction, if not totally prevent it. The model demonstrates the large capability of surface processes to adopt to different deformation styles: the orogenic building and subduction successfully develop (subduction number, S > 0.5) in the range of k between 500 m2/yr and 6000 m2/yr at convergence rates ranging from 1 cm/yr to 6 cm/yr. Within this range, some peculiar features of orogenic style such as the geometry of the accretion prism, amount of upper crustal subduction, horizontal progression of the mountain range/thrust fault and the amount of exhumation of metamorphic facies are sometimes quite different. We conclude that surface processes may control deep, mantle level tectonic evolution.  相似文献   

20.
We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u, g, and i (358, 487, and 758 nm, respectively). The occultation probed latitudes 2° S and 1° N during immersion and emersion, respectively. A prominent central flash was present in only the i filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785–791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991–1015] gave the altitudes of line of sight optical depth equal to unity: 396±7 and 401±20 km (u immersion and emersion); 354±7 and 387±7 km (g immersion and emersion); and 336±5 and 318±4 km (i immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3±0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541–563].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号