首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of the analysis of the observed interstellar 2800 Mgii absorption line data, an empirical relationship — a positive correlation — between the equivalent widthW(2800) and the effective temperature of the starT was discovered (Figure 1). However, in the case when this doublet is of stellar (photospheric) origin, only a negative correlation betweenW(2800) andT exists. Hence, the existence itself of such a positive correlation betweenW(2800) andT may be viewed as incomprehensible for the present influence of the star on the strength of the absorption line 2800 Mgii of nonstellar origin.On the other hand, we have evidence that the ionizing radiation of hot stars cannot provide for the observed very high degree of ionization of the interstellar magnesium. In particular, the observations give for interstellar magnesium the ratioN +/N 1 1000, while in the case of ionization under the action of stellar radiation only we haveN +/N 1 10.The assumption that circumstellar clouds surround hot stars can naturally explain these and other similar facts. A method for the determination of the general parameters-size, concentration, mass etc. — of the circumstellar clouds is developed. The main results of the application of this method to the relation of more than 20 hot stars are:(1) The circumstellar clouds surround almost (70%) all hot giants and subgiants. In the remaining (30%) cases, the absence of circumstellar envelopes requires additional evidence. (2) The linear sizes of circumstellar clouds vary within wide ranges — from 0.002 pc up to 1 pc. Most frequent are clouds with size of 0.1 pc. (3) The main concentration of hydrogen atoms (electrons) in circumstellar clouds is of the order of 100 cm–3; the minimum value is 20–30 cm–3, the maximum 104 cm–3. In one case (Deneb) the electron concentration rises up to 105 cm–3 for the size of the cloud 0.001 pc=3×1015 cm. (4) Stars of the same spectral and luminosity classes may possess circumstellar clouds characterized by quite different parameters. (5) Hydrogen in circumstellar clouds is completely ionized; for these clouds the optical depth c 1; on the average,T c 0.005. (6) The integrated brightness of circumstellar clouds is substantially fainter (by 8–10m) than that of the central star. This is the reason why these clouds cannot be detected by ground-based observations. (7) The masses of individual circumstellar clouds vary from 1 down to 10–4 . This gives for the mass ejection rate from 10–10 to 10–6 per year in case if these clouds are formed by the braking and accumulation of the ejected mass.The method of 2800 Mgii seems very convenient, fruitful and promising for the detection and study of circumstellar envelopes. Also, this method is very sensitive for a determination of the general parameters of such clouds, and concerns practically all their geometric, physical, kinematic and other properties.  相似文献   

2.
Physical conditions are found for a hot intercloud gas in the nuclei of Seyfert galaxies. The gas temperature is determined by photoionization and Compton-scattering of the shortwave radiation of the nucleus. Using observational data for the coronal emission line [Fe x] 6374 Å, the gas densityn=104cm–3 and temperatureT=106K, typical for the distance 2 pc from the central source, are obtained. It is shown that the intercloud gas is in the state of accretion by the nucleus with a rateM10–2 M yr–1.  相似文献   

3.
A new sufficiently compact code LINESPEC is described which is designed to determine the kinetic (collisional+photo) ionization equilibrium in a slab of a hot (T104K) rarefied gas, and to simulate synthetic absorption-line spectra formed due to passing continuous radiation (from a quasar) through the slab. Eighty-six resonant absorption lines of ions and atoms of H, He, C, N, O, Ne, Mg, Al, Si, S, Ca, Fe are included with wavelengths in the range 9125000 Å. the behaviour and observability of various lines are analysed as a function of intensity of the ionizing radiation and kinetic plasma temperature (for a power-law spectrum of ionizing photons,N ph (E) E with =1.5;E is photon energy). For the purely collisional ionization (N ph =0), the spectrum contains various combinations of absorption lines of hydrogen and/or of atoms and ions of other elements, the relative intensities of the lines being strongly temperaturedependent. If the ionizing radiation is intense enough, the L line dominates. In a wide parameter range L may be the only line visible in the UV spectral range.  相似文献   

4.
Observational results are presented concerning the structure of the quasar 3C 196 and the radio galaxy 3C 280 at 20 and 25 MHz, obtained by the scintillation method with the URAN-1 interferometer. Angular dimensions of the scintillating components and extended regions of the sources have been evaluated. In the case of the quasar 3C 196, the effective angular size of the scintillating component equals 2±1 . 5 and that of the extended region 18×25.The contribution of the compact component into the total radiation flux is 0.46±0.20. Spectra of the structural formations in 3C 196 have been obtained in the range 20–5000 MHz.For the radio galaxy 3C 280 the effective angular size of the scintillating component equals 1 . 5±1 . 2. and that of the extended region exceeds 10 . The contribution into the total flux due to the scintillating part is 0.35±0.20.The data obtained are analyzed together with the results measured at higher frequencies. It is pointed out that in a wide frequency range, the effect of wave scattering in the interstellar medium does not exceed measurement errors,hence bringing about no increase in the compact component sizes of the sources observed.  相似文献   

5.
A technique for high-sensitivity measurements of spectral line profile fluctuations is suggested. Observations with spectral lines most commonly used to study the oscillations have been carried out. It is found that 5-min and 3-min fluctuations of Fei 5123, 5250, 5434 and NaDi 5896 line profiles are able to produce signals equivalent to line-of-sight velocities of 1–5 m s–1 at a spatial resolution of 5 and 10–35 m s–1 at 1.5 × 4 resolution. Such observations permit a better understanding of the particular physical factors responsible for the oscillations of line-of-sight velocity signals and the magnetic field which are the subject of study of helioseismology.  相似文献   

6.
The results from a ballon-borne gas Cherenkov counter (threshold 16.5 GeV nuc–1) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy calibration for the response of the calorimeter for 5Z26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height has been obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the 2 between a Monte Carlo simulated data and flight data. Best fit power laws (dN/dE=AE ) were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent withE –2.7, are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter (Simonet al., 1979) and the gas Cherenkov are thus completely self-consistent.On sabbatical leave from the University of Maryland.  相似文献   

7.
A maximal spectrum of gravitational radiation from sources outside our galaxy is calculated. The sources are galaxies, quasars and events that occur in the early history of the universe. The major contribution is from galaxies whose effect extends over the frequency region 10–810+4Hz, peaking at 10–110 Hz, with a spectral flux of 10 erg cm–2, s–1. The main processes of gravitational radiation in the galaxies are stellar collapse into a black hole and dying binary systems. In the region 10–4104 Hz the background spectrum is well above the detection levels of currently proposed detectors. FromMinimal considerations of this spectrum it is determined that the density of gravitational radiation is 10–39g cm–3. This background spectrum is sensitive to galactic evolution and especially sensitive to the upper mass limits and mass distribution of stars in galactic models. Therefore, the spectrum could provide information about galactic evolution complementary to that obtained by electromagnetic investigations.  相似文献   

8.
Attention is given to the radiation of microwaves by charged dust in space. Presently-used particle distributions do not restrict the presence in space of large numbers of small (r<10–6 cm) silicate grains, but it is shown that such densities (10–25–10–26 g cm–3) of small grains would produce a microwave background with an energy density of the same order of magnitude as the energy density of the (presumed) cosmological 3 K background. Limits set by the isotropy of the latter are: (HI clouds)10–26, (Galactic plane)10–30, (Halo)10–32, (Local Group)10–34 g cm–3. These limits imply that either there is a cutoff in particle distributions atr10–6 cm, or that the density of silicate grains in space has been generally overestimated, or that cosmic rays have broken up a lot of grains so that they now form a population of grains of very small size (10–7 cm) which are difficult to detect by conventional methods. One way to look for the latter population is by studying expected distortions of the 3 K spectrum to the short wavelength side of the portion hitherto observed (grains may have a size distribution able to give an approximate black-body curve for radiation from larger grains of 10–6 cm size), and by testing the effective energy density of the 3 K field in other galaxies.  相似文献   

9.
High dispersion time-resolved spectrograms of the dwarf nova SS Cygni, obtained with the Echelle-Mepsicron system, show double peaked emission lines with a complex profile. The intensity of the H line appears to be modulated by the orbital period. Radial velocity measurements of the wings of H and of the absorption line system of the late-type star yield semiamplitude values of Kem=101±6 km s–1 and Kab=151±7 km s–1, respectively. Radial velocity measurements of the blue and red peaks and of the central absorption of H reveal a synchronous movement with the broad wings, although there is some evidence of a narrow component probably associated with a hot spot in the disk or a chromospheric emission line from the secondary star. The H modulation, the double profile and recently discovered UBV light variations support an inclination angle i 50°. The masses of the primary are Mp=0.60 M and Ms=0.40 M, respectively. A detailed analysis of the absorption lines reveals a spectral type of K2V.Paper presented at the IAU Colloquium No. 93 Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

10.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

11.
The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011–1019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atE v 1017 eV is the power-like generation spectrum of protons in the entire considered energy region.The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy density e8.5×10–7 eV cm–3, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an -radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy density M83.6×10–7 eV cm–3.The possibility of experiments with cosmic neutrinos of energyE v 3×1017 eV is discussed. The upper bound on neutrino-nucleon cross-section <2.2×10–29 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers.In Appendix 2 the diffuse X-and -ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV.  相似文献   

12.
We report on eight X-ray bursts detected by ASTRON from the Rapid Burster (RB) on 13 and 28 April and 16 August, 1983. Six of them (trailing bursts), with durations of 1.5–2 min, rise times of 5–10 s and intervals of 1–1.5 hours, exhibit spectral softening during the burst decay and may be related to the type I bursts. Two of the bursts (triangle bursts) observed on 28 April at interval of 28 min with much longer rise times (30–50 s) and longer durations (3 min), do not show distinct spectral softening. Persistent flux from RB on 16 August was estimated asF p(2.0–2.4)×10–9 erg cm–2 s–1. Spectral evolution of two trailing bursts was investigated by fitting their spectra in consecutive time intervals with the blackbody (BB), isothermal scattering photosphere (SP) and thermal bremsstrahlung (TB) models. Around the burst maxima the SP model fits the data best whereas in the burst tails the TB model is generally better. The BB model is worse than at least one of the two others. Interpretation of the burst spectra in terms of the BB radiation leads to improbably small neutron star mass and radius (M<0.86M ,R NS<5 km) if the peak luminosity does not exceed the Eddington limit. Interpretation of the spectra around the burst maxima (3–15 s from the burst onset) in terms of an isothermal SP yields reasonable constraints onM,R NS, and distanceD. For instance, for the hydrogen photosphere we obtainedM=(1.0–2.1)M R NS=(7.1–16.4) km ifD=11 kpc. If one postulatesM=1.4M , thenD=(8.5–13) kpc for hydrogen photosphere; if, besides,D=11 kpc, thenR NS=(8.1–13.3) km. It follows also from the SP-interpretation that the photosphere radius may increase up to 20–30 km in maxima of the trailing bursts when the luminosity becomes close to the Eddington luminosity.  相似文献   

13.
On the basis of empirical (D)-dependency at the frequency of 5 GHz constructed using 15 planetary nebulae with the independently measured distances (10–171×10–20 W m–2 Hz–1 ster–1), we evaluated distances of 335 objects. Independent evidence of the correctness of the accepted scale are given. Then(D)-dependency is constructed and it is shown that atD<0.08 pc the mean electron density is higher than the one determined by the Seaton method. We showed that the filling factor diminishes with the increase of the PN diameter (1 atD0.08 pc and 0.2 atD0.4 pc). the ionized mass of 33 PNs is determined. With the diameter increase the ionized mass grows and atD0.4 pc reaches the valueM0.07M . We used the new distance scale when investigating the space distribution of PNs. The mean scale height =130±15 pc and the mean gradient of the change of surface densitym=0.37, which allowed us to estimate the total number of nebulae in the GalaxyN4×104. We divided the PNs according to their velocities (withV LSR>35 km s–1 andV LSR<35 km s–1) and permitted us to confirm that the PN belong to different sub-systems of the Galaxy. The estimated local formation rate of PNs [=(4.6±2.2)×10–12 pc–3 yr–1] is a little higher than the one of the white dwarfs. That can be explained by a large number of PNs having binary cores, which used in our sample. The statistical estimation of PN expansion velocity showed thatV ex increases from 5–7 km s–1 (atD0.03 pc) to 40–50 km s–1 (atD0.8 pc).  相似文献   

14.
Evolution of close binary composed of a white dwarf primary and a Main-Sequence secondary has been calculated. Angular-momentum loss via gravitational radiation and magnetic stellar wind have been taken into account. We have found that magnetic stellar wind with a rate greater than (10–10–10–9)M yr–1 is able to drive the evolution with mass exchange. If the time-scale of switch-off of wind when the primary becomes fully convective is not longer than 106 yr, mass exchange interrupts due to a contraction of the secondary and the system becomes unobservable. Mass exchange resumes when components approach one another due to loss of momentum via gravitational radiation. The location and width of the thus-arising gap in the orbital periods are comparable to those observed.  相似文献   

15.
Elemental abundances of the VH group of cosmic radiation have been measured in the energy interval 250–550 MeV nucl–1 in a balloon exposure at Sioux Falls (South Dakota) of a plastic detector LeXAN stack. The so obtained abundances have been extrapolated to the sources in the frame of the homogeneous model correcting for energy loss. After taking into account solar modulation, the best fit to model values has led to a escape mean free path e = 5E –0.4 g cm–2, whereE is the energy in GeV nucl–1, forE>1 GeV nucl–1, and a constant e = 5 g cm–2 forE1 GeV nucl–1. When turning to the diffusion model, also including an energy loss term, a diffusion coefficientD=3×1028 cm2 s–1 has been estimated.  相似文献   

16.
Results of high-dispersion spectroscopy (10 Å mm–1) of the symbiotic star AX Per carried out in the years from 1979 to 1987 are reported. The emission line [FeVII] 6086 consists of a narrow and a broad component; the radial velocity of the narrow one varies according to the photometric period 681.6 days. This variation (K=30.6±1.5 km s–1) seems to be due to the orbital motion of the hot star. The radial velocity of absorption lines varies with an inverse phase dependence and a much smaller amplitude (K=5.6±2 km s–1), which may reflect the orbital motion of the red giant. The variation of the radial velocity of the emission lines of FeII, ect. (K=6.7±1.5 km s–1) might be due to the rotation of the red giant. The profile of H emission line suddenly changed around the phase of the photometric minimum, which could be explained as a result of an eclipse of the emitting region by the red giant. On the other hand, some problems remain open in the behaviour of the radial velocities of H and HeI 5876.The observed results support a binary model of AX Per consisting of a rather massive (3M ) M-type giant and a Main-Sequence star (0.6M ). AX Per seems to be in an early stage of the Case C mass transfer, and the estimated very high mass accretion rate (10–4 M yr–1) is consistent with the theoretical models. The narrow component of the emission line of [FeVII] 6086 might be emitted in radiatively driven polar jets on the hot star of which luminosity is close to the Eddington limit.A new identification as ZrII at 6106.47 Å is proposed for the emission line at 6106 Å.  相似文献   

17.
The original temporal analysis of a 12 night spectral timeseries of WR-134 has been found to be flawed and a re-analysis shows that the line profile variations are indeed periodic. When combined with a 4 night timeseries taken 45 days earlier, a period near 2.27 d is found in periodograms of the Heii 5412 line centroid,rms line width, and line skew variations. When the emission line residuals are ordered as a function of phase, a sinuous feature appears to snake about the line center with an amplitude of ± 500 km s–1. This is 20 larger than the line centroid amplitude; the calculation of which is heavily weighted by static portions of the line profile. In addition to the snake, emission residuals appear that move away from line center on unbound trajectories and are thought to result from the interaction of a periodic driver with the unstable flow of the radiation driven wind. The nature of the periodic driver is a topic for discussion.  相似文献   

18.
The redshift c caused by the scattering of photons in the chromosphere of Canopus and in the interstellar matter is obtained from the measurements of wavelength, intensity and equivalent width of 191 spectral lines published in 1942. The result is c with a new radial velocityV r =–3.3±2.4 km s–1. The reliability of the results is briefly discussed.  相似文献   

19.
The observations of the reddening of the distant galaxies and the weak diffuse radiation in the clusters of galaxies can be interpreted as a consequence of the presence of dust grains in the intergalactic medium. When allowance is made for the destruction of the grains in collision with particles of the hot gas, its lifetime is about 107–108 yr at a gas concentrationn g 10–3 cm–3. The detection of the infrared (IR) emission from the galaxy clusters might be the test for the proof of the presence of dust grains in the intergalactic medium. In this paper the estimates of the expected intensities and fluxes of IR emission for the spectral region 50–300 are presented for two galaxy clusters in Coma and Perseus. The parameters of the hot gas spatial distribution are chosen from X-ray observations. Having assumed that intergalactic dust can be ejected only from the galaxies, we used such a model for intergalactic dust grains which explains very well the interstellar dust effects. It is shown that the dust temperature, which is determined from the general energetic balance of the dust grains, can achieve some scores of degrees of Kelvin. Two models of the dust spatial distribution are considered. It is found that the maximum of IR flux for the Coma cluster lies near =100 and the same for the Perseus cluster near 50–70. The total fluxes of IR emission from these clusters are about 105–106 Jy and can be detected by modern observational methods.  相似文献   

20.
Intensity, polarization, and cooling rate of the two-photon annihilation radiation are studied in detail in the case of one-dimensional power-law distributions of electrons and positrons, assuming that they occupy the ground Landau level in a strong magnetic fieldB1010–1012 G. Simple analytical expressions for limiting cases are obtained and results of numerical calculations of radiation characteristics are presented. Power-lawe ± distributions ± ± –k are shown to generate power-law spectra of the annihilation radiation atEmc 2 andEmc 2, with indices depending on the direction of radiation. The annihilation spectra at =0 show the largest blue-shifts of their maxima and the hardest high-energy tailsI(Emc 2, =0)E –(k–1). The blue-shifts reduce, and the hard tials steepen, with increasing . At >(2mc 2/E)1/2 the slopes of the high-energy tails rapidly transform to that at =2,I(Emc 2, =/2)E –(2k+3). The direction-integrated spectraS(E) also display the power-law tials at low and high energies,S(Emc 2)E –(k+1). The total annihilation rate and energy losses decrease with decreasingk, being higher than for the isotropice ± power-law distributions at the samek. The radiation is linearly polarized in the plane formed by the magnetic field and wave-vector. The polarization degreeP is maximum atEmc 2:P max0.6 for =/2. Annihilation features and power-law-like hard tails observed in many gamma-ray burst spectra may be associated with the annihilation radiation of the magnetized power-law distributed plasma near neutron stars. Comparison of the observed and theoretical spectra allows one to estimate the power-law index of thee e +-distribution and the gravitational redshift factor in the radiating region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号