首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
If neutrinos have mass, we give reasons for a possible pattern of three (squaed) mass eigenvalues: m12 (2.8−5.8) (eV)2, m22 0.01 (eV)2, m32 (1.5−1) × 10−4 (eV)2. The flavor states νμ and νe are mixtures of the eigenstates with m2 and m3 with a significant mixing, corresponding to an effective mixing angle of about 0.45. The ντ is nearly the state with m1; the other two effective mixing angles are about an order of magnitude smaller than 0.45. There is a marked similarity to mixing in the quark sector.  相似文献   

2.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

3.
We compare the tau neutrino flux arising from the galaxy and the earth atmosphere for 103E/GeV1011. The intrinsic and oscillated tau neutrino fluxes from both sources are calculated. The intrinsic galactic ντ flux (E103 GeV) is calculated by considering the interactions of high-energy cosmic-rays with the matter present in our galaxy, whereas the oscillated galactic ντ flux is coming from the oscillation of the galactic νμ flux. For the intrinsic atmospheric ντ flux, we extend the validity of a previous calculation from E106 GeV up to E1011 GeV. The oscillated atmospheric ντ flux is, on the other hand, rather suppressed. We find that, for 103E/GeV5×107, the oscillated ντ flux along the galactic plane dominates over the maximal intrinsic atmospheric ντ flux, i.e., the flux along the horizontal direction. We also briefly mention the presently envisaged prospects for observing these high-energy tau neutrinos.  相似文献   

4.
This paper presents observations of OH maser lines of W 33A for the transitions 2Π3/2, J = 3/2, F = 1 → 1 and F = 2 → 2. Two models, a thin tube and a sphere, were used for modelling the masing region and a molecular hydrogen density of about 107 cm−3 was obtained. To give a maser photon emission of the order of 1046 s−1, both models require a pump rate of 1 OH cm−3s−1, while the sphere model requires a higher pump efficiency.  相似文献   

5.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

6.
《Astroparticle Physics》2005,22(5-6):339-353
Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 1016 eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E−2, with an equal mix of all flavors, is limited to E2Φ(1015 eV < E < 3 × 1018 eV)  0.99 × 10−6 GeV cm−2 s−1 sr−1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bounds to specific extraterrestrial neutrino flux predictions are also presented.  相似文献   

7.
The energy spectrum of cosmic rays with primary energies between 1014 eV and 1016 eV has been studied with the CASA-MIA air shower array. The measured differential energy spectrum is a power law (dj/dEEy) with spectral indices γ of 2.66±0.02 below approximately 1015 eV and 3.00±0.05 above. A new method is used for measuring primary energy derived from ground-based data in a compositionally insensitive way. In contrast with some previous reports, the “knee” of the energy spectrum does not appear sharp, but rather a smooth transition over energies from 1015 eV to 3.0 × 1015 eV.  相似文献   

8.
We calculated the expected neutrino signal in Borexino from a typical Type II supernova at a distance of 10 kpc. A burst of around 110 events would appear in Borexino within a time interval of about 10 s. Most of these events would come from the reaction channel , while about 30 events would be induced by the interaction of the supernova neutrino flux on 12C in the liquid scintillator. Borexino can clearly distinguish between the neutral-current excitations 12C(ν,ν)12C* (15.11 MeV) and the charged-current reactions 12C(νe,e)12N and , via their distinctive event signatures. The ratio of the charged-current to neutral-current neutrino event rates and their time profiles with respect to each other can provide a handle on supernova and non-standard neutrino physics (mass and flavor oscillations).  相似文献   

9.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

10.
We compute the big bang nucleosynthesis limit on the number of light neutrino degrees of freedom in a model-independent likelihood analysis based on the abundances of 4He and 7Li. We use the two-dimensional likelihood functions to simultaneously constrain the baryon-to-photon ratio and the number of light neutrinos for a range of 4He abundances Yp = 0.225–0.250, as well as a range in primordial 7Li abundances from (1.6 to 4.1) ×10−10. For (7Li/H)p = 1.6 × 10−10, as can be inferred from the 7Li data from Population II halo stars, the upper limit to Nν based on the current best estimate of the primordial 4He abundance of Yp = 0.238 is Nν < 4.3 and varies from Nν < 3.3 (at 95% C.L.) when Yp = 0.225 to Nν < 5.3 when Yp = 0.250. If 7Li is depleted in these stars the upper limit to Nν is relaxed. Taking (7Li/H)p = 4.1 × 10−10, the limit varies from Nν < 3.9 when Yp = 0.225 to Nν 6 when Yp = 0.250. We also consider the consequences on the upper limit to Nν if recent observations of deuterium in high-redshift quasar absorption-line systems are confirmed.  相似文献   

11.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

12.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

13.
To study the climatological role of ozone in the Precambrian atmosphere and the consequences of its reduction for the ultraviolet environment of the early biosphere, a coupled one-dimensional radiative-convective and photochemical model has been developed. Oxygen levels between 10−5 and 1 time the present atmospheric level (PAL) are considered. It is shown that when the ice-albedo feedback is taken into account, relatively important temperature decreases are associated with the ozone changes linked to the progressive decrease of the oxygen level from 1 PAL to smaller values.

A similar study is performed for enhanced atmospheric CO2 pressures (Pco2). In these conditions, the ozone column is increased at low O2 concentrations with respect to the Pco2 = 1 PAL case. Consequently, the larger CO2 concentration in the ancient atmosphere could have contributed to strengthen the ultraviolet screening of ozone. The surface temperature response to the ozone decrease, as well as the thermal profiles are also analyzed in these CO2-rich models. A possible evolutionary scenario of atmospheric O2 and CO2 is discussed.

The consequences of these calculations for the ultraviolet environment of the primitive biosphere is discussed with a quantitative model calculating bacterial surviving rates. According to this model, the minimum ozone column being tolerable by unprotected bacteria would fall between 1 × 1018 and 4 × 1018 cm−2, depending on the bacterial species considered and corresponding to an O2 level somewhat lower than 10−2 PAL. For the coccoid blue-green alga Agmenellum quadruplicatum, this minimum ozone column would be of 4.5 × 1018, a value which is only slightly less than the presently observed column in the spring time ozone hole of Antarctica.  相似文献   


14.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

15.
Radio noise observations at frequencies of 0·700 Mc and 2·200 Mc were made at altitudes between 3000 and 11,000 km from a Blue Scout Jr. high-altitude rocket probe on 30 July 1963. A steady background flux of (7·5−3+6) × 10−19 W m−2)(c/s)−1 at 0·700 Mc and (1·8+1.0−0.5 × 10−19 W m−2 (c/s)−1 at 2·200 Mc was observed. Assuming a galactic origin of the observed fluxes at both frequencies, the averaged sky brightnesses are b(0·700 Mc) = (6−3+5) × 10−20 W m−2 (c/s)−1 sr−1b(2·200 Mc) = (1.4+1.0−0.5 × 10−20 W m−2 (c/s)−1 sr−1 The observed brightness at 2·200 Mc is in reasonable agreement with the results of other observers. The apparent brightness at 0·700 Mc is, however, greater than was expected from previous observations. An alternative source of the 0·700 Mc flux in the terrestrial exosphere, as well as characteristics of several noise bursts observed during the flight, is briefly discussed.  相似文献   

16.
Helioseismological sound-speed profiles severely constrain possible deviations from standard solar models, allowing us to derive new limits on anomalous solar energy losses by the Primakoff emission of axions. For an axion-photon coupling gay 5 × 10−10 GeV−1, the solar model is almost indistinguishable from the standard case, while gay 10 × 10−10 GeV−1 is probably excluded, corresponding to an axion luminosity of about 0.20 L. This constraint on gay is much weaker than the well-known globular-cluster limit, but about a factor of 3 more restrictive than previous solar limits. Our result is primarily of interest to the large number of current or proposed search experiments for solar axions because our limit defines the maximum gay for which it is self-consistent to use a standard solar model to calculate the axion luminosity.  相似文献   

17.
Rocket results are presented on the OI 6300 Å line and on the N2+ 3914 Å band in the dayglow. An altitude range of 78–335 km is covered. Theoretical interpretations are given, using results of simultaneous measurements of electron density and electron temperature. The apparent brightness of the 6300 Å line at the base of the emitting region is found to be 13 kR, of which 5.5 kR are ascribed to excitation through the Schumann-Runge dissociation of O2 by the solar UV radiations, 0.55 kR to the dissociative recombination of O2+ and NO+ ions, and 0.03 kR to the excitation of O by thermal electrons. An additional source of excitation above 280 km is suggested. The deactivation of O(1D) by O2(X3Σg) is found to be appreciable below 200 km, and its rate coefficient is estimated to be 2 × 10−10 cm3/sec. The apparent brightness of the 3914 Å band at the base of the emitting region is found to be 6.5 kR, decreasing to 3.2 kR at 330 km. Assuming that fluorescent scattering of solar radiation is the mechanism involved the distribution of N2+ ions is calculated. The rate coefficients for the loss of these ions are hence calculated.  相似文献   

18.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

19.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

20.
The properties of energetic (65–95 keV) cometary water-group ions in the extended solar wind pick-up region surrounding comet Giacobini-Zinner are examined using data from the EPAS instrument on the ICE spacecraft. In the outer part of this region, extending from cometocentric distances of several hundred thousand to a few million kilometres (the limit of pick-up ion detectability), it is found that large modulations of the ion flux occur (with JMAX/JMIN 102-103) which are related to the direction of the magnetic field. It is also found that the ions stream in a direction which is intermediate between the directions of the solar wind flow and the E × B drift, and that ions are present at energies somewhat above the local pick-up energy. These properties indicate that the waves which are excited by the unstable “ring-beam” pick-up ion velocity distributions do result in significant scattering of the ions in this region, both in pitch angle and in energy, but that they have insufficient amplitude to scatter the ions into near isotropy in the solar wind frame. Closer to the comet (but still upstream from the bow shock), the ion flux modulations are considerably reduced in amplitude and the ions respond less to the E × B drift, indicating that the ions are scattered nearer to isotropy in this region. Inbound, this transition takes place relatively abruptly at a distance of 4 × 105 km in association with an increase in the solar wind speed, after which the ion flux increases, and ceases to be modulated by the field direction, while the streaming direction is continuously antisolar and unmodulated by the direction of the E × B drift. Outbound, weak vestiges of the ring-beam ion anisotropy are present in the region immediately upstream from the bow shock (at −1 × 105 km), but these become more marked at distances in excess of t4 × 105 km, increasing gradually with increasing distance from the comet. It is shown that the evolution of the ion properties is qualitatively consistent with expectations based on quasi-linear diffusion of the ions by the magnetosonic waves observed during the encounter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号