首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   

2.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

3.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

4.
Abstract— Isotopic variations have been reported for many elements in iron meteorites, with distinct N signatures found in the metal and graphite of IAB irons. In this study, a dozen IAB/IIICD iron meteorites (see Table 1 for new classifications) were analyzed by stepwise pyrolysis to resolve nitrogen components. Although isotopic heterogeneity has been presumed to be lost in thermally processed parent objects, the high‐resolution nitrogen isotopic data indicate otherwise. At least one reservoir has a light nitrogen signature, δ15N = ?(74 ± 2)‰, at 900 °C to 1000 °C, with a possible second, even lighter, reservoir in Copiapo (δ15N ≤ ?82‰). These releases are consistent with metal nitride decomposition or low‐temperature metal phase changes. Heavier nitrogen reservoirs are observed in steps ≤700 °C and at 1200 °C to 1400 °C. The latter release has a δ15N signature with a limit of ≥?16‰. Xenon isotopic signatures are sensitive indicators for the presence of inclusions because of the very low abundances of Xe in metal. The combined high‐temperature release shows 131Xe and 129Xe excesses to be consistent with shifts expected for Te(n,γ) reaction in troilite by epithermal neutrons, but there are also possible alterations in the isotopic ratios likely due to extinct 129I and cosmic‐ray spallation. The IAB/IIICD iron data imply that at least one light N component survived the formation processes of iron parent objects which only partially exchanged nitrogen between phases. Preservation of separate N reservoirs conflicts with neither the model of impact‐heating effects for these meteorites nor reported age differences between metal and silicates.  相似文献   

5.
Abstract— We analyzed the noble gas isotopes in the Fe‐Ni metal and inclusions of the Saint‐Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint‐Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9–16 Ma. Saint‐Aubin is very peculiar because it contains very large chromite crystals, which—like the metal—contain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 °C fraction of schreibersite which contained about 5% of the Xe‐HL component. The Xe‐Q and the El Taco Xe components were not found and only the Xe‐HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic‐ray irradiation, heating, and radioactive decay.  相似文献   

6.
The isotopic composition of the noble gases of the new Martian meteorite, the Dhofar 019 shergottite, found in the desert in the territory of the Sultanate of Oman on January 24, 2001, was investigated. Stepwise thermal annealing with isotopic analysis of each of the noble-gas temperature fractions was employed to determine the component composition. The concentration of the trapped noble gases in the new Martian meteorite Dhofar 019 is relatively high, although it lies within the range of concentrations in known SNC meteorites. A characteristic feature of all the trapped noble gases is the presence of two main components: a low-temperature, probably terrestrial atmospheric, component, trapped during the weathering of the meteorite on Earth, and a high-temperature trapped Martian component. Owing to the different ratios of the quantities of the two components, the trapped neon, argon, krypton, and xenon differ markedly in the kinetics of their release. The isotopic composition of the noble gases varies accordingly. The trapped xenon was found to contain two Martian components. One of them, with typical ratios of 129Xe/132Xe and 132Xe/84Kr, is representative of xenon and krypton of the Martian atmosphere; the other, of gases of the Martian mantle. Variations of the isotopic compositions of helium, neon, and argon (and also, to a lesser extent, of krypton and xenon) during the thermal annealing of the Dhofar 019 meteorite clearly point to a large proportion of cosmogenic as well as trapped components. The concentration of cosmogenic neon and argon in the meteorite is unusually high. This corresponds to a maximum exposure age among other SNC meteorites: 20 million years. Estimates of the potassium–argon age (gas-retention age) yielded the figure of 560 million years, which is within the range of values obtained for SNC meteorites by other authors, who used the rubidium–strontium and the potassium–argon technique.  相似文献   

7.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

8.
Abstract– We have determined the elemental abundances and the isotopic compositions of noble gases in a bulk sample and an HF/HCl residue of the Saratov (L4) chondrite using stepwise heating. The Ar, Kr, and Xe concentrations in the HF/HCl residue are two orders of magnitude higher than those in the bulk sample, while He and Ne concentrations from both are comparable. The residue contains only a portion of the trapped heavy noble gases in Saratov; 40 ± 9% for 36Ar, 58 ± 12% for 84Kr, and 48 ± 10% for 132Xe, respectively. The heavy noble gas elemental pattern in the dissolved fraction is similar to that in the residue but has high release temperatures. Xenon isotopic ratios of the HF/HCl residue indicate that there is no Xe‐HL in Saratov, but Ne isotopic ratios in the HF/HCl residue lie on a straight line connecting the cosmogenic component and a composition between Ne‐Q and Ne‐HL. This implies that the Ne isotopic composition of Q has been changed by incorporating Ne‐HL (Huss et al. 1996) or by being mass fractionated during the thermal metamorphism. However, it is most likely that the Ne‐Q in Saratov is intrinsically different from this component in other meteorites. The evidence of this is a lack of correlation between the isotopic ratio of Ne‐Q and petrologic types of meteorites (Busemann et al. 2000). A neutron capture effect was observed in the Kr isotopes, and this process also affected the 128Xe/132Xe ratio. The 3He and 21Ne exposure ages for the bulk sample are 33 and 35 Ma, respectively.  相似文献   

9.
Abstract Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both of these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar > Kr > Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum δ15N value ≥+150‰ and a more probable value ≥+200‰.  相似文献   

10.
Abstract– Noble gas isotopic compositions were measured for a eucritic pebble and bulk material of a silicate–metal mixture from the Vaca Muerta mesosiderite as well as pyroxene and plagioclase separated from the eucritic pebble by total melting and stepwise heating methods. Trapped noble gases were degassed completely by a high‐temperature thermal event, probably at the formation of the Vaca Muerta parent body (VMPB). The presence of fissiogenic Xe isotopes from extinct 244Pu in the bulk samples might be a result of rapid cooling from an early high‐temperature metamorphism. High concentrations of cosmogenic noble gases enabled us to determine precise isotopic ratios of cosmogenic Kr and Xe. Spallogenic Ne from Na and unique Ar isotopic compositions were observed. The 81Kr‐Kr exposure age of 168 ± 8 Myr for the silicate pebble is distinctly longer than the age of 139 ± 8 Myr for the bulk samples. The precursor of the pebble had been irradiated on the surface of the VMPB for more than 60 Myr (first stage irradiation), with subsequent incorporation into bulk materials approximately 4 Gyr ago. The Vaca Muerta meteorite was excavated from the VMPB 140 Myr ago (second stage irradiation). Relative diffusion rates among the cosmogenic Ar, Kr, and Xe based on data obtained by stepwise heating indicate that Kr and Xe can be partially retained in pyroxene and plagioclase under the condition that resets the K‐Ar system. This result supports the presence of fission Xe and of excess concentration of cosmogenic Kr, which could have survived the thermal event approximately 3.8 Gyr ago.  相似文献   

11.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   

12.
We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact‐melt breccias Abar al’ Uj (AaU) 012 and Shi?r 166 to obtain information on their cosmic‐ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shi?r 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm?2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shi?r 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of <700 g cm?2 on the Moon for Shi?r 166. All differences seen in the concentrations and isotopic compositions of the noble gases suggest that AaU 012 and Shi?r 166 are most likely not launch pairs, although a different exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.  相似文献   

13.
Abstract— Nitrogen and noble gases were measured in a bulk sample and in acid‐resistant carbon‐rich residues of the ureilite Allan Hills (ALH) 78019 which has experienced low shock and is free of diamond. A small amount of amorphous carbon combusting at ≤500 °C carries most of the noble gases, while the major carbon phase consisting of large crystals of graphite combusts at ≥800 °C, and is almost noble‐gas free. Nitrogen on the other hand is present in both amorphous carbon and graphite, with different δ15N signatures of ?21%o and +19%o, respectively, distinctly different from the very light nitrogen (about ?100%o) of ureilite diamond. Amorphous carbon in ALH 78019 behaves similar to phase Q of chondrites with respect to noble gas release pattern, behavior towards oxidizing acids as well as nitrogen isotopic composition. In situ conversion of amorphous carbon or graphite to diamond through shock would require an isotopic fractionation of 8 to 12% for nitrogen favoring the light isotope, an unlikely proposition, posing a severe problem for the widely accepted shock origin of ureilite diamond.  相似文献   

14.
Abstract— A glass separate from the LEW88516 shergottite was analyzed by step-wise combustion for N and noble gases to determine whether it contained trapped gas similar in composition to the martian atmosphere-like component previously observed in lithology C of EETA79001. Excesses of 40Ar and 129Xe were in fact observed in this glass, although the amounts of these excesses are ≤20% of those seen in the latter meteorite, and are comparable to the amounts seen in whole-rock analyses of LEW88516. The isotopic composition of N in LEW88516 does not show an enrichment in 15N commensurate with the amount of isotopically-heavy N expected from the noble gases excesses. One must posit some extreme assumptions about the nature of the N components present in LEW88516 in order to allow the presence of the trapped nitrogen component. Alternatively, the N has somehow been decoupled from the noble gases, and was either never present or has been lost.  相似文献   

15.
Abstract— We measured abundances and isotopic compositions of noble gases in metal and schreibersite of the Acuña (IIIAB) iron meteorite. The concentrations of noble gases in Acuña metal are very low compared to those reported so far for other iron meteorites. The isotopic ratios of He, Ne and Ar indicate that they are mostly of cosmogenic origin. Cosmogenic components are even present in Kr and Xe, which could not have been produced from Fe, Ni and P and are probably due to the spallation of trace elements of higher masses. The high 4He/21Ne ratio of 420 in Acuña metal indicates that the samples were at a deep position within a very large meteoroid. The exposure ages of Acuña were estimated to be 50–200 Ma from 3He, 21Ne and 38Ar abundances and by utilizing the diagrams of production rates vs. the 4He/21Ne ratio based on the Signer-Nier model. The low exposure age of Acuña may indicate a history different from that of other IIIAB irons whose exposure ages cluster at ~670 Ma. Otherwise, Acuña may be one of the samples with the low production rate, which can not be estimated from the diagrams of the Signer-Nier model.  相似文献   

16.
Abstract— Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The Ne isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ∼40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.  相似文献   

17.
Abstract— Detailed isotopic and mineralogical studies of silicate inclusions separated from a troilite nodule of the Toluca IAB iron meteorite reveal the presence of radiogenic 129Xe in chlorapatite, plagioclase, perryite, and pyroxene grains. Subsequent I‐Xe studies of 32 neutron‐irradiated pyroxene grains indicate that high‐Mg and low‐Mg pyroxenes have distinctive I‐Xe signatures. The I‐Xe system in high‐Mg pyroxenes closed at 4560.5 ± 2.4 Ma, probably reflecting exsolution of silicates from the melt, while the low‐Mg pyroxenes closed at 4552.0 ± 3.7 Ma, 8.5 Ma later, providing a means for determining the cooling rate at the time of exsolution. If the host Toluca graphite‐troilite‐rich inclusion formed after the breakup and reassembly of the IAB parent body as has been suggested, the I‐Xe ages of the high‐Mg pyroxenes separated from this inclusions indicate that this catastrophic impact occurred not later than 4560.5 Ma, 6.7 Ma after formation of CAIs. The cooling rate at the time of silicates exsolution in Toluca is 14.5 ± 10.0 °C/Ma.  相似文献   

18.
Abstract— We have determined the recoil losses from silicon carbide (SiC) grain‐size fractions of spallation Ne produced by irradiation with 1.6 GeV protons. During the irradiation, the SiC grains were dispersed in paraffin wax in order to avoid reimplantation into neighboring grains. Analysis for spallogenic 21Ne of grain‐size separates in the size range 0.3 to 6 μm and comparison with the 22Na activity of the SiC + paraffin mixture indicates an effective recoil range of 2–3 μm with no apparent effect from acid treatments, which are routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are micrometer‐sized, will have lost essentially all spallogenic Ne produced by cosmic‐ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma, increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain‐size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He‐burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation‐Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) grains. The retention of spallogenic 21Ne produced by the bombardment of SiC grains of different grain sizes with 1.6 GeV protons, avoiding reimplantation into neighboring grains by dispersing the SiC grains in paraffin wax, has been derived from a comparison of mass spectrometrically determined 21Ne, retained in the grains, with the 22Na activity of the grains‐plus‐paraffin mixture. Compared to estimates of retention used in previous attempts to determine presolar ages for SiC (Tang and Anders, 1988b; Lewis et al., 1990, 1994), the results indicate significantly lower values. They do, however, agree with retention as expected from previous measurements of recoil ranges in similar systems (Nyquist et al., 1973; Steinberg and Winsberg, 1974). The prime reason for the discrepancy must lie in the energy of the recoiling nuclei entering in the calculation of retention by Tang and Anders (1988b), which is based on considerations by Ray and Völk (1983). Based on the results, it appears questionable that spallation contributes significantly to the observed variations of 21Ne/22Ne ratios among various SiC grain‐size separates (Lewis et al., 1994). We rather suggest that the variations, just as it has been observed for Kr and Ba already (Lewis et al., 1994; Prombo et al., 1993), have a nucleosynthetic origin. Confirmation needs input of improved nuclear data and stellar models into new network calculations of the nucleosynthesis in AGB stars of elements in the Ne region. Finally we argue that, to determine presolar system irradiation effects, spallation Xe is more favorable than is Ne, primarily because of smaller recoil losses for Xe. Although preliminary estimates hint at the possibility that the larger (>1 μm) grains are younger than the smaller (<1 μm) ones, the major uncertainty for a quantitative evaluation lies in the exact composition of the Xe‐N component thought to originate from the envelope of the SiC grains' parent stars.  相似文献   

19.
Noble gases and nitrogen were measured in two adjacent samples each from the Raghunathpura (IIAB) and the Nyaung (IIIAB) iron meteorite falls. Light noble gases in both the meteorites were of pure cosmogenic origin. Using (3He/4He)c ratios and the production systematic of Ammon et al. ( 2009 ), we estimated the sample depth and meteoroid size for Nyaung (~8 cm depth in a ~15 cm radius object) and Raghunathpura (~12–14 cm depth in a ~25 cm object). We derived cosmic ray exposure ages of 1710 ± 256 Ma (for Nyaung, the highest reported so far for the IIIAB group) and 224 ± 34 Ma (for Raghunathpura). Variable amounts of trapped Kr and Xe were found in both meteorites. The phase Q‐like elemental ratio (84Kr/132Xe) suggests that the trapped component is of indigenous origin, and most likely hosted in the heterogeneously distributed micro‐inclusions of troilite/schreibersite. Trapped phase Q component is being reported for the first time, for a IIAB iron meteorite. Both meteorites showed light isotopic composition for nitrogen, and need at least two N components to explain the observed N isotopic systematic. Variable amounts of trapped noble gases and the presence of more than one N component suggest that the magmatic process that formed the parent body of these meteorites either could not completely homogenize or completely degas all the phases.  相似文献   

20.
Abstract— In this paper, we present concentration and isotopic composition of the light noble gases He, Ne, and Ar as well as of 84Kr, 132Xe, and 129Xe in bulk samples of 33 Rumuruti (R) chondrites. Together with previously published data of six R chondrites, exposure ages are calculated and compared with those of ordinary chondrites. A number of pairings, especially between those from Northwest Africa (NWA), are suggested, so that only 23 individual falls are represented by the 39 R chondrites discussed here. Eleven of these meteorites, or almost 50%, contain solar gases and are thus regolithic breccias. This percentage is higher than that of ordinary chondrites, howardites, or aubrites. This may imply that the parent body of R chondrites has a relatively thick regolith. Concentrations of heavy noble gases, especially of Kr, are affected by the terrestrial atmospheric component, which resides in weathering products. Compared to ordinary chondrites, 129Xe/132Xe ratios of R chondrites are high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号