首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

2.
Abstract– The near‐circular Colônia structure, located in the southern suburbs of the mega‐city of São Paulo, Brazil, has attracted the attention of geoscientists for several decades due to its anomalous character and the complete absence of any plausible endogenous geologic explanation for its formation. Origin by impact cratering has been suggested repeatedly since the 1960s, but no direct evidence for this has been presented to date. New seismic data have been recently acquired at Colônia, providing new insights into the characteristics and possible layering of infill of the structure, as well as into the depth to the underlying basement. We review the current knowledge about the Colônia structure, present the new seismic data, and discuss the existing—as yet still indirect—evidence for a possible origin by an impact. The new data suggest the existence of a sedimentary fill of approximately 275 m thickness and also the presence of two intermediate zones between sediment and basement: an upper zone that is approximately 65 m thick and can be interpreted as a possible crater‐fill breccia, whereas the other zone possibly represents fractured/brecciated basement, with a thickness of approximately 50 m. Although this depth to basement seems to be inconsistent with the expected geometry of a simple, bowl‐shape impact structure of such diameter, there are a number of still unconstrained parameters that could explain this, such as projectile nature, size and velocity, impact angle, and particularly the current erosion depth.  相似文献   

3.
Riachão, located at S7°42′/W46°38′ in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock‐diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater‐filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.  相似文献   

4.
We report on a 4.1 (±0.2) km diameter and 185 m deep circular submarine structure exposed on the seabed in >40 m water depths in the northwestern Gulf of St. Lawrence (Eastern Canada) from the analysis of high‐resolution multibeam bathymetric and seismic data. The presence of a circular form characterized by a central uplift and concentric rings resembles the morphology and geometry of complex meteorite impact structures. Also, other origins, such as kimberlites, intrusions, karsts, or diapirs, can be eliminated on geological criteria. A single 4 cm long breccia fragment recovered from the central uplift has numerous glassy droplets of fluorapatite composition, assumed to be impact melts, and a single quartz grain with planar intersection features thought to be shock‐induced planar deformation features (PDFs). The absolute age of this possible impact structure is unknown, but its geological setting indicates that it was formed long after the Mid‐Ordovician and before regional pre‐Quaternary sea‐level lowstands. Present results outline the need for further examination to confirm an impact origin and to precisely date the formation of the structure.  相似文献   

5.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

6.
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.  相似文献   

7.
Abstract— The western flank of the Haughton impact structure was imaged with a reflection profile generating 9.8 km of subsurface information. Ten reflecting horizons were recognized and have been correlated via a sonic log with the Paleozoic limestone/dolomite rock sequences. The seismic section is dominated by a dense and complex compound fault system with variable attitudes. These steeply dipping faults penetrated the sedimentary rocks but showed no recognizable extension into the crystalline basement. According to the seismically recognized fracture zones of the western margin, the structure is significantly larger than previously estimated. Reconstruction of the crater on the basis of the seismic information and existing scaling relationships reveals a structure with an apparent diameter of 23.9 km, and an excavated cavity of 10.3 km width and 1.97 km depth. The estimated diameters of the transient crater and the central uplift are 12 km and 11 km respectively. The morphologically distinct ring zones do not have seismically recognizable subsurface signatures. The underlying crystalline basement rocks did not exhibit seismically mappable impact-related zones of disturbance. In the central interior region, coherent reflection signals are virtually absent. Valuable information for this area was provided by a 10.26 km long refraction profile that indicated nearly uniform velocities (~5000 m/s) to a considerable depth. Major lateral variations in the velocity field across the structure were not detected.  相似文献   

8.
Abstract— Although mapped initially as a piercement dome, subsequent discovery of shock metamorphism in clasts of an impact breccia, shatter cones in outcrops of uplifted target rocks and morphological and geophysical characteristics consistent with a complex crater, confirmed a meteorite impact origin for the Haughton structure, Devon Island. Results of three field investigations carried out prior to 1984 defined a complex crater, 20 km in diameter, formed in a lower Paleozoic sedimentary sequence overlying gneisses of the Precambrian basement. The distribution of allochthonous breccia overlying the disturbed target rocks and of the sediments deposited in the crater-filling lake were mapped. A Miocene or possibly Holocene age for the crater was based on paleo-flora and fauna assemblages from the lake sediments. Gravity and magnetic surveys revealed anomalies coincident with the crater, but not interpretable from surface lithologies. Some of the early investigations were of a reconnaissance nature and results and interpretation can only be considered preliminary. Other studies that were carried out in some detail, petrographic investigations in particular, require complementary work for a fuller understanding of their significance. As a result, in 1984 the HISS (Haughton Impact Structure Studies) group carried out a program of detailed geological mapping and sampling, and seismic, gravity, and magnetic surveys in an attempt to improve the definition of the surface and subsurface nature of Haughton, and to formulate a more complete understanding of its formation and subsequent history. Results of these various studies are presented in the eight succeeding papers of this volume.  相似文献   

9.
A melt‐bearing impactite unit is preserved in the 2.7 km diameter shallow marine Ritland impact structure. The main exposure of the melt‐bearing unit is in an approximately 100 m long cliff about 700 m southwest of the center of the structure. The melt and clast content vary through this maximum 2 m thick unit, so that lithology ranges from impact melt rock to suevite. Stratigraphic variations with respect to the melt content, texture, mineralogy, and geochemistry have been studied in the field, and by laboratory analysis, including thin section microscopy. The base of the melt‐bearing unit marks the transition from the underlying lithic basement breccia, and the unit may have been emplaced by an outward flow during the excavation stage. There is an upward development from a melt matrix‐dominated lower part, that commonly shows flow structures, to an upper part characterized by more particulate matrix with patchy melt matrix domains, commonly as deformed melt slivers intermingled with small lithic clasts. Melt and lithic fragments in the upper part display a variety of shapes and compositions, some of which possibly represent fallback material from the ejecta cloud. The upper boundary of the melt‐bearing impactite unit has been placed where the deposits are mainly clastic, probably representing slump and avalanche deposits from the modification stage. These deposits are therefore considered sedimentary and not impactites, despite the component of small melt fragments and shocked minerals within the lowermost part, which was probably incorporated as the debris moved down the steep crater walls.  相似文献   

10.
The investigation of terrestrial impact structures is crucial to gain an in‐depth understanding of impact cratering processes in the solar system. Here, we use the impact structure Jebel Waqf as Suwwan, Jordan, as a representative for crater formation into a layered sedimentary target with contrasting rheology. The complex crater is moderately eroded (300–420 m) with an apparent diameter of 6.1 km and an original rim fault diameter of 7 km. Based on extensive field work, IKONOS imagery, and geophysical surveying we present a novel geological map of the entire crater structure that provides the basis for structural analysis. Parametric scaling indicates that the structural uplift (250–350 m) and the depth of the ring syncline (<200 m) are anomalously low. The very shallow relief of the crater along with a NE vergence of the asymmetric central uplift and the enhanced deformations in the up‐range and down‐range sectors of the annular moat and crater rim suggest that the impact was most likely a very oblique one (~20°). One of the major consequences of the presence of the rheologically anisotropic target was that extensive strata buckling occurred during impact cratering both on the decameter as well as on the hundred‐meter scale. The crater rim is defined by a circumferential normal fault dipping mostly toward the crater. Footwall strata beneath the rim fault are bent‐up in the down‐range sector but appear unaffected in the up‐range sector. The hanging wall displays various synthetic and antithetic rotations in the down‐range sector but always shows antithetic block rotation in the up‐range sector. At greater depth reverse faulting or folding is indicated at the rim indicating that the rim fault was already formed during the excavation stage.  相似文献   

11.
Geological and geophysical evidence is presented for a newly discovered, probable remnant complex impact structure. The structure, located near Bow City, southern Alberta, has no obvious morphological expression at surface. The geometry of the structure in the shallow subsurface, mapped using downhole geophysical well logs, is a semicircular structural depression approximately 8 km in diameter with a semicircular uplifted central region. Detailed subsurface mapping revealed evidence of localized duplication of stratigraphic section in the central uplift area and omission of strata within the surrounding annular region. Field mapping of outcrop confirmed an inlier of older rocks present within the center of the structure. Evidence of deformation along the eastern margin of the central uplift includes thrust faulting, folding, and steeply dipping bedding. Normal faults were mapped along the northern margin of the annular region. Isopach maps reveal that structural thickening and thinning were accommodated primarily within the Belly River Group. Evidence from legacy 2‐D seismic data is consistent with the subsurface mapping and reveals additional insight into the geometry of the structure, including a series of listric normal faults in the annular region and complex faulting within the central uplift. The absence of any ejecta blanket, breccia, suevite, or melt sheet (based on available data) is consistent with the Bow City structure being the remnant of a deeply eroded, complex impact structure. Accordingly, the Bow City structure may provide rare access and insight into zones of deformation remaining beneath an excavated transient crater in stratified siliciclastic target rocks.  相似文献   

12.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

13.
We have investigated the Ash Shutbah circular structure in central Saudi Arabia (21°37′N 45°39′E) using satellite imagery, field mapping, thin‐section petrography, and X‐ray diffraction of collected samples. The approximately 2.1 km sized structure located in flat‐lying Jurassic Tuwaiq Mountain Limestone has been nearly peneplained by erosional processes. Satellite and structural data show a central area consisting of Dhruma Formation sandstones with steep bedding and tight folds plunging radially outward. Open folding occurs in displaced, younger Tuwaiq Mountain Limestone Formation blocks surrounding the central area, but is absent outside the circular structure. An approximately 60 cm thick, unique folded and disrupted orthoquartzitic sandstone marker bed occurring in the central area of the structure is found 140 m deeper in undisturbed escarpment outcrops located a few hundred meters west of the structure. With exception of a possible concave shatter cone found in the orthoquartzite of the central area, other diagnostic shock features are lacking. Some quartz‐rich sandstones from the central area show pervasive fracturing of quartz grains with common concussion fractures. This deformation was followed by an event of quartz dissolution and calcite precipitation consistent with local sea‐ or groundwater heating. The combination of central stratigraphic uplift of 140 m, concussion features in discolored sandstone, outward‐dipping concentric folds in the central area, deformation restricted to the rocks of the ring structure, a complex circular structure of 2.1 km diameter that appears broadly consistent with what one would expect from an impact structure in sedimentary targets, and a possible shatter cone all point to an impact origin of the Ash Shutbah structure. In fact, the Ash Shutbah structure appears to be a textbook example of an eroded, complex impact crater located in flat‐lying sedimentary rocks, where the undisturbed stratigraphic section can be studied in escarpment outcrops in the vicinity of the structure.  相似文献   

14.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

15.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   

16.
The Glasford structure in Illinois (USA) was recognized as a buried impact crater in the early 1960s but has never been reassessed in light of recent advances in planetary science. Here, we document shatter cones and previously unknown quartz microdeformation features that support an impact origin for the Glasford structure. We identify the 4 km wide structure as a complex buried impact crater and describe syn‐ and postimpact deposits from its annular trough. We have informally designated these deposits as the Kingston Mines unit (KM). The fossils and sedimentology of the KM indicate a marine depositional setting. The various intervals within the KM constitute a succession of breccia, carbonate, sandstone, and shale similar to marine sedimentary successions preserved in other craters. Graptolite specimens retrieved from the KM place the time of deposition at approximately 455 ± 2 Ma (Late Ordovician, Sandbian). This age determination suggests a possible link between the Glasford impact and the Ordovician meteorite shower, an increase in the rate of terrestrial meteorite impacts attributed to the breakup of the L‐chondrite parent body in the main asteroid belt.  相似文献   

17.
Abstract— The circular Cloud Creek structure in central Wyoming, USA is buried beneath ?1200 m of Mesozoic sedimentary rocks and has a current diameter of ?7 km. The morphology/morphometry of the structure, as defined by borehole, seismic, and gravity data, is similar to that of other buried terrestrial complex impact structures in sedimentary target rocks, e.g., Red Wing Creek in North Dakota, USA. The structure has a fault‐bordered central peak with minimum diameter of ?1.4 km, composed predominantly of Paleozoic carbonates thickened by thrust faulting and brecciation, and is elevated some 520 m above equivalent strata beyond the outer rim of the structure. There is a ?1.6 km wide annular trough sloping away from the central peak (maximum structural relief, 300 m) and terminated by a detached, fault‐bounded, rim anticline. The youngest rocks within the structure are Late Triassic (Norian?) clastics and these are overlain unconformably by post‐impact Middle Jurassic (Bathonian?) sandstones and shales. Thus, the formation of the Cloud Creek structure is dated chronostratigraphicly as ?190 ± 20 Ma. Reported here for the first time are measurements of planar deformation features (PDFs) in shocked quartz grains in thin sections made from drill cuttings recovered in a borehole drilled at the southern perimeter of the central peak. Other, less definitive microstructures consistent with impact occur in samples collected from boreholes drilled into the central peak and rim anticline. The shock‐metamorphic evidence confirms an impact origin for the Cloud Creek structure.  相似文献   

18.
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.  相似文献   

19.
Most of the East European Craton lacks surface relief; however, the amplitude of topography at the top of the basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the crystalline crust, and the amplitude of topography variations at the lithosphere–asthenosphere boundary exceeds 200 km. This paper examines the relative contributions of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle to maintain surface topography, using regional seismic data on the structure of the crystalline crust and the sedimentary cover, and thermal and large-scale P- and S-wave seismic tomography data on the structure of the lithospheric mantle. For the Precambrian lithosphere, an analysis of Vp/Vs ratio at 100, 150, 200, and 250 km depths does not show any age-dependence, suggesting that while Vp/Vs ratio can be effectively used to outline the cratonic margins, it is not sensitive to compositional variations within the cratonic lithosphere.Statistical analysis of age-dependence of velocity, density, and thermal structure of the continental crust and subcrustal lithosphere in the study area (0–62E, 45–72N) allows to link lithospheric structure with the tectonic evolution of the region since the Archean. Crustal thickness decreases systematically with age from 42–44 km in regions older than 1.6 Ga to 37–40 km in the Paleozoic–Mesoproterozoic structures, and to ca. 31 km in the Meso-Cenozoic regions. However, the isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures.On the contrary, the contribution of the subcrustal lithosphere to the surface topography strongly depends on the age, being slightly positive (+ 0.3 + 0.7 km) for the regions older than 1.6 Ga and negative (− 0.5–1 km) for younger structures. This leads to age-dependent variations in the residual topography, i.e. the topography which cannot be explained by the assumed thermal and density structure of the lithosphere, and which can (at least partly) originate from the dynamic component caused by the mantle flow. Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (− 1–2 km) indicates either a smaller density deficit (ca. 0.9%) in their subcrustal lithosphere than predicted by global petrologic data on mantle-derived xenoliths or the presence of a strong convective downwelling in the mantle. Such mantle downflows can effectively divert heat from the lithospheric base, leading to a long-term survival of the Archean-Paleoproterozoic lithosphere.  相似文献   

20.
Målingen is the 0.7 km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne–Målingen doublet. The craters formed at 458 Ma by the impact of a binary asteroid related to the well-known 470 Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including ~500 m of sea water, ~80 m of limestone, ~30 m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Målingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90–100 nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general −1.4 mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号