首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as Martian meteorites allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the Martian crust. We use a traditional metamorphic approach (phase diagrams) to assess low‐grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite‐bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O‐rich and CO2‐poor. We confirm the hypothesis that low‐grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km?1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat‐producing elements in the crust, suggesting extra heating by regional hydrothermal activity.  相似文献   

2.
Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low‐temperature (20 °C) one‐dimensional (1‐D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low‐temperature (~20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica‐rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water–rock interaction that must have led to the formation of the carbonates ~ 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.  相似文献   

3.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

4.
Recent studies have demonstrated that terrestrial subaqueous basalts and hyaloclastites are suitable microbial habitats. During subaqueous basaltic volcanism, glass is produced by the quenching of basaltic magma upon contact with water. On Earth, microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks and produces characteristic granular and/or tubular bioalteration textures. Infilling of the alteration textures by minerals such as phyllosilicates, zeolites and titanite may enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend as far back as ∼3.5 billion years ago and is widespread in oceanic crust and its metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.  相似文献   

5.
Abstract— A number of martian meteorite samples contain secondary alteration minerals such as Ca‐Mg‐Fe carbonates, Fe oxides, and clay minerals. These mineral assemblages hint at hydrothermal processes occurring in the martian crust, but the alteration conditions are poorly constrained. This study presents the results of experiments that examined the alteration of a high‐Fe basalt by CO2‐saturated aqueous fluids at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C and water‐rock ratios of 1:1 and 1:10. Results indicate that observable alteration of the basalt takes place after runs of only seven days. This alteration includes mobilization of silica into phases such as opal‐CT and quartz, as well as the formation of carbonates, oxides, and at some conditions, zeolites and hydrous silicates. The degree of alteration increases with run temperature and, in high‐temperature vapor experiments, with increasing water content of the vapor. The degree of alteration and the mineralogy observed in the martian meteorites suggests that none of these samples were exposed to aqueous fluids for long periods of time. Nakhla and Lafayette probably interacted with water for relatively brief periods of time; if so, silica may have been leached from the parent rocks by the altering fluids. Allan Hills 84001 shows possible evidence for very limited interaction with an aqueous fluid, but the overall slight degree of alteration described for this meteorite strongly suggests that it never interacted extensively or at high temperature with any water‐bearing fluid. Elephant Moraine A79001 may not have been altered by aqueous fluids at all. The results of this study best support models wherein the meteorite parent rocks were wetted intermittently or for brief periods of time rather than models that invoke long‐term reaction with large volumes of water. Our experiments studied alteration of a high‐Fe basalt by dilute, CO2‐saturated, aqueous solutions at 23 and 75 °C and by mixed H2O‐CO2 vapors at 200 and 400 °C. The results suggest that alteration of the parent rock takes place even after very short reaction times of seven days. All experiments produced carbonate minerals, including calcite, and in some cases, magnesite, siderite, and ankerite. A free silica phase, either opal, quartz, or hydrated silica, formed in most experiments. More altered experiments also contained minerals such as zeolites and hydrous phyllosilicates. Clay minerals were not observed to form in any experiments. In aqueous fluids, higher temperature corresponded with a higher degree of alteration, whereas changing fluid composition had no observable effect. In high‐temperature vapors, the degree of alteration was controlled by temperature and the proportion of H2O to CO2, with water‐rock ratio also playing a role in transport of silica. Application of these results to martian meteorites that contain secondary alteration minerals suggests that none of the martian rocks underwent extensive interaction with aqueous fluids. Nakhla and Lafayette contain clay minerals, which suggests that they interacted with water to some extent, possibly at elevated temperatures. Although ALH84001 shows possible evidence of very limited interaction with aqueous fluids, EETA79001 does not. These results support models for the alteration of these meteorites that do not invoke long‐term interaction with water or reaction with large volumes of water. Except for some models for alteration of ALH84001, this conclusion agrees with most of the literature on alteration of martian meteorites.  相似文献   

6.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   

7.
Terrestrial analog studies of potential Martian weathering processes are reported. Four major weathering environments are identified: (i) hydrothermal alteration of impact melt sheets and impact breccias, (ii) solid-gas and related reactions, (iii) subpermafrost intrusion of lavas involving liquid water, and (iv) subaerial extrusion of lavas in the absence of liquid water. Weathering in environments (i)?(iii) has been discussed by other authors; this report discusses weathering in environment (iv), an analog of which is Antarctica. We conclude that weathering is geologically slow in the absence of liquid water, and that zeolites predominate over clays as secondary minerals. On volumetric grounds it appears that hydrothermal alteration of impact melt sheets should be the most important time-averaged weathering mechanism, provided that H2O was present as liquid or permafrost. Such hydrothermal alteration should operate predominately on ancient crustal material. Gas-solid reactions and photochemical weathering should also operate primarily on ancient crustal material on a time-averaged basis. Weathering products of younger subpermafrost or subaerially erupted basalts should be subordinate to hydrothermal alteration and gas-solid reactions. It appears that the present Martian regolith as analyzed by the Viking landers contains a major contribution from ancient crust as typified today by the southern cratered highlands, with a lesser contribution from the younger, hemispherically restricted basaltic lavas.  相似文献   

8.
Hydrous alteration of olivine macrocrysts in a Martian olivine phyric basalt, NWA 10416, and a terrestrial basalt from southern Colorado are examined using SEM, EPMA, TEM, and µXRD techniques. The olivines in the meteorite contain linear nanotubes of hydrous material, amorphous areas, and fluid dissolution textures quite distinct from alteration identified in other Martian meteorites. Instead, they bear resemblance to terrestrial deuteric alteration features. The presence of the hydrous alteration phase Mg‐laihunite within the olivines has been confirmed by µXRD analysis. The cores of the olivines in both Martian and terrestrial samples are overgrown by unaltered rims whose compositions match those of a separate population of groundmass olivines, suggesting that the core olivines are xenocrysts whose alteration preceded crystallization of the groundmass. The terrestrial sample is linked to deep crustal metasomatism and the “ignimbrite flare‐up” of the Oligocene epoch. The comparison of the two samples suggests the existence of an analogous relatively water‐rich magmatic reservoir on Mars.  相似文献   

9.
Analyses of Martian surface soil by Viking and Earth-based telescopes have been interpreted as indicating a regolith dominated by the weathering products of mafic or ultramafic rocks. Basaltic glass has previously been proposed as a more likely precursor than crystalline rock, given the low efficiency of surface weathering under present Martian conditions. On Earth large volumes of basaltic glass formed by quenching of magma by water. A similar interaction, between magma and ground ice, may have been a common occurrence on Mars. On the basis of this scenario palagonite, the alteration product of basaltic sideromelane glass, was studied as a possible analog to Martian soil. Samples from Iceland, Alaska, Antarctica, Hawaii, and the desert of New Mexico and Mexico were examined by optical and scanning electron microscopy, electron microprobe analysis, X-ray diffraction, spectrophotometry, and magnetic and thermogravimetric analysis. We suggest that palagonite is a good analog to the surface soil of Mars in chemical composition, particle size, spectral signature, and magnetic properties. Our model for the formation of fine-grained Martian surface soil begins with eruptions of basaltic magma through ground ice, forming deposits of glassy tuff. Individual glass shards are then altered by low-temperature hydrothermal systems to palagonitic material. Dehydration and aeolian abrasion strip the alteration rinds from the glass, and wind storms distribute the silt-sized palagonitic fragments in a planet-wide deposit.  相似文献   

10.
We studied the occurrence of secondary minerals and inferred their formation in the Yamato-000593 Martian meteorite using multiple technological approaches such as electron probe micro analysis, optical microscope, Raman spectroscopy, scanning electron microscopy, as well as Fourier transform-infrared microscopy and spectroscopy. Two separate hydrothermal alteration events and their sequence of formation (based on superpositional relationship) can be identified: an elevated temperature phase producing high-temperature sulfidic hydrothermal alteration and a lower temperature hydrothermal alteration phase by iron-rich fluids. This meteorite shows signatures more compatible with magmatic effects, rather than impact-induced hydrothermal alteration, as has been proposed earlier. The sulfidic alteration probably formed by magmatic hydrothermal fluids, whereas iron-rich hydrothermal fluid circulation after a possible early impact event has also been proposed, when the fluids cooled down to 50 °C. Most of the secondary minerals formed at alkaline-neutral conditions, and the few observed signatures (clay–silica-bearing veins, siderite-iron-oxide veins) of briny conditions are probably from local spatial effects in larger cavities. The ferrous minerals (hematite and siderite) along the fractures could be crystallized from Fe-HCO3-bearing fluids. Alternatively, the primary magmatic minerals could have been oxidized easily (Fe-rich olivines, magnetite) during the cooling to iron oxides (hematite, goethite). The results suggest the possible existence of at least ephemerally habitable environments on Mars, mainly at volcanically heated locations. Following published geochemical models, the carbonates formed within acidic-circumneutral condition, which was followed by formation of phyllosilicates in alkaline condition.  相似文献   

11.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

12.
Abstract The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water‐rich environments provide heat and geological structures that generate and focus sub‐seafloor convective hydrothermal systems. Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact‐induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m‐thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax‐1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites. The least‐altered silicate melt composition intersected in Yax‐1 is that of a calc‐alkaline basaltic andesite with 53.4–56 wt% SiO2(volatile‐free). The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg‐saponite, K‐montmorillonite, celadonite, K‐feldspar, albite, Fe‐oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite‐K‐feldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0–150°C) oxidation and fixation of alkalis due to the interaction of glass‐rich suevite with down‐welling seawater in the outer annular trough intersected at Yax‐1. The alteration represents a cold, Mg‐K‐rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax‐1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impact‐generated hydrothermal convective system.  相似文献   

13.
Martian meteorites can provide valuable information about past environmental conditions on Mars. Allan Hills 84001 formed more than 4 Gyr ago, and owing to its age and long exposure to the Martian environment, and this meteorite has features that may record early processes. These features include a highly fractured texture, gases trapped during one or more impact events or during formation of the rock, and spherical Fe‐Mg‐Ca carbonates. In this study, we have concentrated on providing new insights into the context of these carbonates using a range of techniques to explore whether they record multiple precipitation and shock events. The petrographic features and compositional properties of these carbonates indicate that at least two pulses of Mg‐ and Fe‐rich solutions saturated the rock. Those two generations of carbonates can be distinguished by a very sharp change in compositions, from being rich in Mg and poor in Fe and Mn, to being poor in Mg and rich in Fe and Mn. Between these two generations of carbonate is evidence for fracturing and local corrosion.  相似文献   

14.
Encouraged by recent results of the Mars Odyssey spacecraft mission and the OMEGA team (Mars Express) concerning water in equatorial latitudes between ±45° on Mars and the possible existence of hydrated minerals, we have investigated the water sorption properties of natural zeolites and clay minerals close to martian atmospheric surface conditions as well as the properties of Mg-sulfates and gypsum. To quantify the stability of hydrous minerals on the martian surface and their interaction with the martian atmosphere, the water adsorption and desorption properties of nontronite, montmorillonite, chabazite and clinoptilolite have been investigated using adsorption isotherms at low equilibrium water vapor pressures and temperatures, modeling of the adsorption equilibrium data, thermogravimetry (TG), differential scanning calorimetry (DSC), and proton magic angle spinning nuclear magnetic resonance measurements (1H MAS NMR). Mg-sulfate hydrates were also analyzed using TG/DSC methods to compare with clay mineral and zeolites. Our data show that these microporous minerals can remain hydrated under present martian atmospheric conditions and hold up to 2.5-25 wt% of water in their void volumes at a partial water vapor pressure of 0.001 mbar in a temperature range of 333-193 K. Results of the 1H MAS NMR measurements suggest that parts of the adsorbed water are liquid-like water and that the mobility of the adsorbed water might be of importance for adsorption-water-triggered chemistry and hypothetical exobiological activity on Mars.  相似文献   

15.
The surface of Mars is enriched in Cl and S which is linked to volcanic activity and degassing. Similarly, elevated Ge and Zn levels in Gale crater sedimentary bedrock indicate a magmatic source for these elements. To constrain the relative effects of Cl and S on the outgassing of these trace metals and chemical characteristics of primary magmatic vapor deposits incorporated to Martian surface, we conducted a set of degassing and fumarolic alteration experiments. Ge is found to be more volatile than Zn in all experiments. In S-bearing runs, the loss of Ge and Zn was less than any other experiments. In Cl-only runs, degassing of Zn was more than twice that of Ge within the first 10 min and percent loss increased for both elements with increasing time. In Cl + S runs, S-induced reduction of GeO2 and ZnO to metallic Ge and Zn switches the preference of chloride formation from Zn to Ge. Up to 90% of Ge and Zn loss in the 1-h no volatile-added (NVA) experiments might be due to the small amounts of Cl contamination in NVA mixes via other oxides used for synthesis. Alteration experiments show different phases between 1-h and 24-/72-h runs. In 1-h runs, anhydrite and langbeinite dominate while in 24-/72-h runs halite and sylvite dominate the condensate assemblages. S-bearing phases form as the intermediate products of fumarolic deposition, while chlorides are common when the system is allowed to cool gradually. One-hour exposure was sufficient to form alteration phases and vapor deposits such as NaCl, KCl, CaSO4, and langbeinites on the Martian analog minerals. These salts were identified in Martian meteorites and in situ measurements. Our results provide evidence that volcanic degassing along with fumarolic alteration could be a potential source for the enrichment and varying abundances of Cl, S, Fe, Zn, Ge in Martian surface, as well as a cause for Ge depletion in shergottites.  相似文献   

16.
Spectroscopic analysis of carbonate-bearing samples from a variety of terrestrial environments provides important insights into spectroscopy-based investigations of Mars designed to detect the presence of carbonate minerals. In order to better address the spectral detectability of carbonates on Mars, we examined the spectral reflectance properties of carbonates and carbonate-bearing lithologies from a variety of terrestrial environments, including impact structures (Haughton, St. Martin, Eagle Butte), landslides (Frank), quarrying operations (Hecla), carbonates affected by weathering (Haughton, East German Creek), and sulfide-sulfate-carbonate assemblages (Central Manitoba). The goal is to identify processes and environments that can affect spectroscopy-based carbonate detection, for more detailed follow-on studies. Common carbonates appear to be stable, from a spectroscopic perspective, to various tectonic processes. Iron oxides/hydroxides do not appear to significantly affect spectral detectability of carbonates, as the spectrum-altering effects of these phases are largely restricted to the region below ∼1 μm, while useful carbonate absorption bands occur longward of ∼1.8 μm. Carbonate detection and characterization in the 0.35-2.5-μm region is largely restricted to a single absorption feature in the 2.3-μm region, which can be problematic for robust carbonate identification. While tectonic processes and iron oxide/hydroxide staining do not appear to significantly impair carbonate detection based on the 2.3-μm region absorption band, a number of other factors can affect carbonate detection. These include the fact that this absorption band is weak compared to many other minerals, a number of other minerals also exhibit absorption bands in this wavelength region (leading to possible misidentifications), and that even small abundances of minerals that absorb strongly in this region will reduce the strength of the carbonate absorption band. Identifying the nature of accessory minerals associated with carbonates can be used to constrain possible formation environments. Ongoing research at carbonate-bearing terrestrial analogue sites will continue to provide new insights into the occurrence and detection of carbonates on Mars.  相似文献   

17.
James L. Gooding 《Icarus》1978,33(3):483-513
Chemical weathering on Mars is examined theoretically from the standpoint of heterogeneous equilibrium between solid mineral phases and gaseous O2, H2O, and CO2 in the Martian atmosphere. Thermochemical calculations are performed in order to identify important gas-solid decomposition reactions involving the major mineral constituents of mafic igneous rocks. Where unavailable in the thermochemical literature, Gibbs free energy and enthalpy of formation are estimated for certain minerals and details of these estimation procedures are given. Partial pressure stability diagrams are presented to show pertinent mineral reaction boundaries at 298 and at 240°K. In the present Martian environment, the thermodynamically stable products of gas-solid weathering of individual minerals at 240°K should be Fe2O3, as hematite or maghemite (from fayalite, magnetite, and Fe-bearing pyroxenes), quartz (from all silicates), calcite (from Ca-bearing pyroxenes and plagioclase), magnesite (from forsterite and Mg-bearing pyroxenes), corundum (from all Al-bearing silicates), Ca-beidellite (from anorthite), and szomolnokite, FeSO4 or FeSO4·H2O (from iron sulfides). Albite, microcline, and apatite should be stable with respect to gas-solid decomposition, suggesting that gas-solid weathering products on Mars may be depleted in Na, K, and P (and, possibly, Cl and F). Certain montmorillonite-type clay minerals are thermodynamically favorable intermediate gas-solid decomposition products of Al-bearing pyroxenes and may be metastable intermediate products of special mineral surface reaction mechanisms. However, the predicted high thermodynamic susceptibility of these clay minerals to subsequent gas-solid decomposition implies that they should ultimately decompose in the present Martian surface environment. Kaolinite is apparently the only clay mineral which should be thermodynamically stable over all ranges of temperature and water vapor abundance in the present environment at the Martian surface. Considering thermodynamic criteria, including possible gas-solid decomposition reactions, it is doubtful that significant amounts of goethite and clay minerals can be currently forming on Mars by mechanisms known to operate to Earth. If major amounts of goethite and clay minerals occur on Mars, they probably owe their existence to formation in an environment characterized by the presence of liquid water or by mechanism possibly unique to Mars. In any case, any goethite or montmorillonite-type clay mineral on Mars must ultimately decompose.  相似文献   

18.
Abstract— Until recently, the SNC meteorites represented the only source of information about the chemistry and petrology of the Martian surface and mantle. The Mars Exploration Rovers have now analyzed rocks on the Martian surface, giving additional insight into the petrology and geochemistry of the planet. The Adirondack basalts, analyzed by the MER Spirit in Gusev crater, are olivine‐phyric basaltic rocks which have been suggested to represent liquids, and might therefore provide new insights into the chemistry of the Martian mantle. Experiments have been conducted on a synthetic Humphrey composition at upper mantle and crustal conditions to investigate whether this composition might represent a primary mantle‐derived melt. The Humphrey composition is multiply saturated at 12.5 kbar and 1375 °C with olivine and pigeonite; a primary anhydrous melt derived from a “chondritic” mantle would be expected to be saturated in orthopyroxene, not pigeonite. In addition, the olivine and pigeonite present at the multiple saturation are too ferroan to have been from a Martian mantle as is understood now. Therefore, it seems likely that the Humphrey composition does not represent a primary anhydrous melt from the Martian mantle, but was affected by mineral/melt fractionations at lower (crustal) pressures.  相似文献   

19.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

20.
The element Fe and Fe-bearing minerals occur ubiquitously throughout the field of astrobiology. Cycling between the various oxidation states of Fe provides a source of energy available for life. Banded iron formations may record the rise of oxygenic photosynthesis. The distribution of Fe between Fe-bearing minerals and its oxidation states can help to characterize and understand ancient environments with respect to the suitability for life by constraining the primary rock type and the redox conditions under which it crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering. Fe Mössbauer spectroscopy is a powerful tool to investigate Fe-bearing compounds. It can identify Fe-bearing minerals, determine Fe oxidation states with high accuracy, quantify the distribution of Fe between mineralogical phases, and provide clues about crystallinity and particle sizes. Two miniaturized Mössbauer spectrometers are on board of the NASA Mars Exploration Rovers Spirit and Opportunity. The Fe-bearing minerals goethite, an iron oxide-hydroxide, and jarosite, an iron hydroxide sulfate, were identified by Mössbauer spectroscopy in Gusev Crater and at Meridiani Planum, respectively, providing in situ proof of an aqueous history of the two landing sites and constraints on their habitability. Hematite identified by Mössbauer spectroscopy at both landing sites adds further evidence for an aqueous history. On Earth, Mössbauer spectroscopy was used to monitor possibly microbially-induced changes of Fe-oxidation states in basaltic glass samples exposed at the Loihi Seamount, a deep sea hydrothermal vent system, which might be analogous to possible extraterrestrial habitats on ancient Mars or the Jovian moon Europa today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号