首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We investigated exterior and interior subsamples from the Martian shergottite meteorites Allan Hills (ALH) A77005 and Roberts Massif (RBT) 04261 for secondary minerals, oxygen isotopes, Ar‐Ar, and noble gas signatures. Electron microprobe investigations revealed that RBT 04261 does not contain any visible alteration even in its most exterior fractures, whereas fracture fillings in ALHA77005 penetrate into the meteorite up to 300 μm, beyond which the fractures are devoid of secondary minerals. Light noble gases seem to be almost unaffected by terrestrially induced alteration in both meteorites. Thus, a shock metamorphic overprint of 30–35 GPa can be deduced from the helium measurements in RBT 04261. Oxygen isotopes also seem unaffected by terrestrially weathering and variations can easily be reconciled with the differences in modal mineralogy of the exterior and interior subsamples. The measurements on irradiated samples (Ar‐Ar) showed a clear Martian atmospheric contribution in ALHA77005, but this is less apparent in our sample of RBT 04261. Exterior and interior subsamples show slight differences in apparent ages, but the overall results are very similar between the two. In contrast, krypton and xenon are severely affected by terrestrial contamination, demonstrating the ubiquitous presence of elementally fractionated air in RBT 04261. Although seemingly contradictory, our results indicate that RBT 04261 was more affected by contamination than ALHA77005. We conclude that irrespective of on which planet the alteration occurred, exposure of Martian rocks to atmosphere (or brine) introduces noble gases with signatures elementally fractionated relative to the respective atmospheric composition into the rock, and relationships of that process with oxygen isotopes or mineralogical observations are not straightforward.  相似文献   

2.
Martian meteorites, in particular shergottites, contain darkened olivine (so‐called “brown olivine”) whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO‐rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500–1700 K and shock duration of at least ~90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back‐transformation of most high‐pressure phases. Therefore, in spite of lack of high‐pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.  相似文献   

3.
All Martian meteorites have experienced shock metamorphism to some degree. We quantitatively determined shock‐related strain in olivine crystals to measure shock level and peak shock pressure experienced by five Martian meteorites. Two independent methods employing nondestructive in situ micro X‐ray diffraction (μXRD) are applied, i.e., (1) the lattice strain method, in which the lattice strain value (ε) for each olivine grain is derived from a Williamson–Hall plot using its diffraction pattern (peak width variation with diffraction angle) with reference to a best fit calibration curve of ε values obtained from experimentally shocked olivine grains; (2) the strain‐related mosaicity method, allowing shock stage to be estimated by measuring the streaking along the Debye rings of olivine grain diffraction spots to define their strain‐related mosaic spread, which can then be compared with olivine mosaicity in ordinary chondrites of known shock stage. In this study, both the calculated peak shock pressures and the estimated shock stages for Dar al Gani 476 (45.6 ± 0.6 GPa), Sayh al Uhaymir 005/8 (46.1 ± 2.2 GPa), and Nakhla (18.0 ± 0.6 GPa) compare well with literature values. Formal shock assessments for North West Africa 1068/1110 (53.9 ± 2.1 GPa) and North West Africa 6234 (44.6 ± 3.1 GPa) have not been reported within the literature; however, their calculated peak shock pressures fall within the range of peak shock pressures defining their estimated shock stages. The availability of nondestructive and quantitative μXRD methods to determine shock stage and peak shock pressure from olivine crystals provides a key tool for shock metamorphism analysis.  相似文献   

4.
Heavily shocked meteorites contain various types of high‐pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high‐pressure minerals are micron to submicron sized and occur within and in the vicinity of shock‐induced melt veins and melt pockets in chondrites and lunar, howardite–eucrite–diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid‐state high‐pressure transformation of the host‐rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to ~25 GPa. Textural, crystallographic, and chemical characteristics of high‐pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high‐pressure minerals in shocked meteorites that have been reported over the past 50 years.  相似文献   

5.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

6.
Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock‐induced melt and high‐pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca‐phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock‐melt crystallization assemblages were studied by FIB‐TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite‐magnesiowüstite, crystallized at pressures of 20–25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.  相似文献   

7.
Northwest Africa (NWA) 6342 is an intermediate, poikilitic shergottite, found in Algeria in 2010. It is comprised of two distinct petrographic areas; poikilitic domains with rounded Mg‐rich olivine chadacrysts enclosed by large low‐Ca pyroxene oikocrysts, and a nonpoikilitic domain mainly comprised of subhedral olivine and vesicular recrystallized plagioclase. Oxygen fugacity conditions become more oxidizing during crystallization from the poikilitic to the nonpoikilitic domain (QFM?3.0 to QFM?2.2). As such, it is likely that NWA 6342 experienced a two‐stage (polybaric) crystallization history similar to that of the enriched poikilitic shergottites. NWA 6342 also experienced relatively high levels of shock metamorphism in comparison to most other poikilitic shergottites as evidenced by the fine‐grained recrystallization texture in olivine, as well as melting and subsequent crystallization of plagioclase. The recrystallization of plagioclase requires an extended period of postshock thermal metamorphism for NWA 6342 and similarly shocked intermediate poikilitic shergottites NWA 4797 and Grove Mountains 99027 most likely due to launch from Mars. The similarities in petrology, chemistry, and shock features between these three meteorites indicate that they have similar crystallization and shock histories; possibly originating from the same source area on Mars.  相似文献   

8.
Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The recently discovered Martian meteorite Northwest Africa (NWA) 5789 is an olivine‐phyric shergottite. NWA 5789 has special significance among the Martian meteorites because it appears to represent one of the most magnesian Martian magmas known, other than Yamato (Y) 980459. Its most magnesian olivine cores (Fo85) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that the bulk represents a magma composition. Based on the Al/Ti ratio of its pyroxenes, we infer that the rock began to crystallize at a high pressure consistent with conditions in Mars’ lower crust/upper mantle. It continued and completed its crystallization closer to the surface, where cooling was rapid and produced a mesostasis of radiating sprays of plagioclase and pyroxene. The mineralogy, petrology, mineral chemistry, and bulk rock composition of NWA 5789 are very similar to those of Y‐980459. The similarities between the two meteorites suggest that NWA 5789 (like Y‐980459) represents a primitive, mantle‐derived magma composition. They also suggest the possibility that NWA 5789 and Y‐980459 formed in the same lava flow. However, based on the mineralogy and texture of its mesostasis, NWA 5789 must have cooled more slowly than Y‐980459. NWA 5789 will help elucidate the igneous geology and geochemistry of Mars.  相似文献   

9.
The formation of the high‐pressure compositional equivalents of olivine and pyroxene has been well‐documented within and surrounding shock‐induced veins in chondritic meteorites, formed by crystallization from a liquid‐ or solid‐state phase transformation. Typically polycrystalline ringwoodite grains have a narrow range of compositions that overlap with those of their olivine precursors, whereas the formation of iron‐enriched ringwoodite has been documented from only a handful of meteorites. Here, we report backscattered electron images, quantitative wavelength‐dispersive spectrometry (WDS) analyses, qualitative WDS elemental X‐ray maps, and micro‐Raman spectra that reveal the presence of Fe‐rich ringwoodite (Fa44‐63) as fine‐grained (500 nm), polycrystalline rims on olivine (Fa24‐25) wall rock and as clasts engulfed by shock melt in a previously unstudied L5 chondrite, Dhofar 1970. Crystallization of majorite + magnesiowüstite in the vein interior and metastable mineral assemblages within 35 μm of the vein margin attest to rapid crystallization of a superheated shock melt (>2300 K) from 20─25 GPa to ambient pressure and temperature. The texture and composition of bright polycrystalline ringwoodite rims (Fa44‐63; MnO 0.01─0.08 wt%) surrounding dark polycrystalline olivine (Fa8‐14; MnO 0.56─0.65 wt%) implies a solid‐state transformation mechanism in which Fe was preferentially partitioned to ringwoodite. The spatial association between ringwoodite and shock melt suggests that the rapidly fluctuating thermal regimes experienced by chondritic minerals in contact with shock melt are necessary to both drive phase transformation but also to prevent back‐transformation.  相似文献   

10.
Hydrous alteration of olivine macrocrysts in a Martian olivine phyric basalt, NWA 10416, and a terrestrial basalt from southern Colorado are examined using SEM, EPMA, TEM, and µXRD techniques. The olivines in the meteorite contain linear nanotubes of hydrous material, amorphous areas, and fluid dissolution textures quite distinct from alteration identified in other Martian meteorites. Instead, they bear resemblance to terrestrial deuteric alteration features. The presence of the hydrous alteration phase Mg‐laihunite within the olivines has been confirmed by µXRD analysis. The cores of the olivines in both Martian and terrestrial samples are overgrown by unaltered rims whose compositions match those of a separate population of groundmass olivines, suggesting that the core olivines are xenocrysts whose alteration preceded crystallization of the groundmass. The terrestrial sample is linked to deep crustal metasomatism and the “ignimbrite flare‐up” of the Oligocene epoch. The comparison of the two samples suggests the existence of an analogous relatively water‐rich magmatic reservoir on Mars.  相似文献   

11.
Abstract— We investigated the transfer of meteorites from Mars to Earth with a combined mineralogical and numerical approach. We used quantitative shock pressure barometry and thermodynamic calculations of post‐shock temperatures to constrain the pressure/temperature conditions for the ejection of Martian meteorites. The results show that shock pressures allowing the ejection of Martian meteorites range from 5 to 55 GPa, with corresponding post‐shock temperature elevations of 10 to about 1000 °C. With respect to shock pressures and post‐shock temperatures, an ejection of potentially viable organisms in Martian surface rocks seems possible. A calculation of the cooling time in space for the most highly shocked Martian meteorite Allan Hills (ALH) 77005 was performed and yielded a best‐fit for a post‐shock temperature of 1000 °C and a meteoroid size of 0.4 to 0.6 m. The final burial depths of the sub‐volcanic to volcanic Martian rocks as indicated by textures and mineral compositions of meteorites are in good agreement with the postulated size of the potential source region for Martian meteorites during the impact of a small projectile (200 m), as defined by numerical modeling (Artemieva and Ivanov 2004). A comparison of shock pressures and ejection and terrestrial ages indicates that, on average, highly shocked fragments reach Earth‐crossing orbits faster than weakly shocked fragments. If climatic changes on Mars have a significant influence on the atmospheric pressure, they could account for the increase of recorded ejection events of Martian meteorites in the last 5 Ma.  相似文献   

12.
Shock is often given as the cause for many observations in meteorites due to the assumed previous exposure of most meteorites to at least one impact event that ultimately led to their ejection from their parent body. Here we present electron backscatter diffraction (EBSD) results on a substantially shocked dunitic achondrite, chassignite Northwest Africa (NWA) 8694, and question the general culpability of shock exposure for the formation of preferred orientation fabrics of meteoritic olivine crystals. Despite the ubiquitous presence of substantial shock indicators, the EBSD results for NWA 8694 reveal an absence of preferred orientation of olivine crystals, displaying instead an overall random fabric. We propose that the passage of shock waves through olivine crystals within a solid, crystalline, dunitic rock does not produce an overall preferred orientation, nor is it likely to actively form a whole‐rock random fabric but instead has likely no bearing on the formation of olivine orientation fabrics.  相似文献   

13.
Knowledge of Martian igneous and mantle compositions is crucial for understanding Mars' mantle evolution, including early differentiation, mantle convection, and the chemical alteration at the surface. Primitive magmas provide the most direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The new Martian meteorite Northwest Africa (NWA) 6234 is an olivine‐phyric shergottite. Its most magnesian olivine cores (Fo78) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that it represents a melt composition. Thermochemical calculations show that NWA 6234 not only represents a melt composition but is a primitive melt derived from an approximately Fo80 mantle. Thus, NWA 6234 is similar to NWA 5789 and Y 980459 in the sense that all three are olivine‐phyric shergottites and represent primitive magma compositions. However, NWA 6234 is of special significance because it represents the first olivine‐phyric shergottite from a primitive ferroan magma. On the basis of Al/Ti ratio of pyroxenes in NWA 6234, the minor components in olivine and merrillite, and phosphorus zoning of olivine, we infer that the rock crystallized completely at pressures consistent with conditions in Mars' upper crust. The textural intergrowths of the two phosphates (merrillite and apatite) indicate that at a very last stage of crystallization, merrillite reacted with an OH‐Cl‐F‐rich melt to form apatite. As this meteorite crystallized completely at depth and never erupted, it is likely that its apatite compositions represent snapshots of the volatile ratios of the source region without being affected by degassing processes, which contain high OH‐F content.  相似文献   

14.
We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium‐grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA‐ICP‐MS) analyses as a best‐available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI‐normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. Merrillite is the major REE carrier and has a flat REE pattern with slight depletion of Eu, parallel to REE patterns of merrillites from other basaltic shergottites. The oxidation state of NWA 2975 calculated from Fe‐Ti oxide pairs is NNO‐1.86, close to the QFM buffer. NWA 2975 represents a sample from the oxidized and enriched shergottite group, and our measurements and constraints on its origin are consistent with the hypothesis of two distinct Martian mantle reservoirs: a reduced, LREE‐depleted reservoir and an oxidized, LREE‐enriched reservoir. Stishovite, possibly seifertite, and dense SiO2 glass were also identified in the meteorite, allowing us to infer that NWA 2975 experienced a realistic shock pressure of ~30 GPa.  相似文献   

15.
NWA 2737, the second known chassignite, mainly consists of cumulate olivine crystals of homogeneous composition (Fo = 78.7 ± 0.9). These brown colored olivine grains exhibit two sets of perpendicular planar defects due to shock. Two forms of trapped liquids, interstitial melts and magmatic inclusions, have been examined. Mineral assemblages within the olivine‐hosted magmatic inclusions include low‐Ca pyroxene, augite, kaersutite, fluorapatite, biotite, chromite, sulfide, and feldspathic glass. The reconstructed parental magma composition (A#) of the NWA 2737 is basaltic and resembles both the experimentally constrained parental melt composition of chassiginites and the Gusev basalt Humphrey, albeit with lower Al contents. A# also broadly resembles the average of shergottite parent magmas or LAR 06319. However, we suggest that the mantle source for the chassignite parental magmas was distinct from that of the shergottite meteorites, particularly in CaO/Al2O3 ratio. In addition, based on the analysis of the volatile contents of kaersutite, we derived a water content of 0.48–0.67 wt% for the parental melt. Finally, our MELTS calculations suggest that moderate pressure (approximately 6.8 kb) came closest to reproducing the crystallized melt‐inclusion assemblages.  相似文献   

16.
Anorthite is an important constituent mineral in basaltic achondrites from small celestial bodies. Its high‐pressure phase transformation in shocked meteorites has not been systematically studied. In this study, we report the diverse phase transformation behaviors of anorthite in a shocked eucrite Northwest Africa (NWA) 2650, which also contains coesite, stishovite, vacancy‐rich clinopyroxene, super‐silicic garnet, and reidite. Anorthite in NWA 2650 has transformed into anorthite glass (anorthite glassy vein, maskelynite, and glass with a schlieren texture and vesicles), tissintite and dissociated into three‐phase assemblage grossular + kyanite + silica glass. Different occurrences of anorthite glass might have formed via the mechanism involving shear melting, solid‐state transformation, and postshock thermally melting, respectively. Tissintite could have crystallized from a high‐pressure plagioclase melt. The nucleation of tissintite might be facilitated by relict pyroxene fragments and the early formed vacancy‐rich clinopyroxene. The three‐phase assemblage grossular, kyanite, and silica glass should have formed from anorthitic melt at high‐pressure and high‐temperature conditions. The presence of maskelynite and reidite probably suggests a minimum peak shock pressure up to 20 GPa, while the other high‐pressure phases indicate that the shock pressure during the crystallization of shock melt veins might vary from >8 GPa to >2 GPa with a heterogeneous temperature distribution.  相似文献   

17.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

18.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

19.
Abstract— The shergottites exhibit a range of major and trace element compositions, crystallization ages, and initial Sr, Nd, Hf, and Pb isotopic compositions. To constrain the physical mechanisms by which shergottites obtain their compositional characteristics, we examined the major and trace element record preserved in olivine in the more primitive shergottites. Based on such characteristics as the Mg#, V zoning, calculated DNi,Co, the olivine in Y‐980459 are most likely phenocrysts. Many of these same characteristics indicate that the olivines in other shergottites are not in equilibrium with the adjacent melt. However, in most cases they are not xenocrystic, but additions of olivine from the same basaltic system. Elephant Moraine (EET) A79001 may be an exception with the olivine data suggesting that it is xenocrystic. In this case, the olivine crystallized from a reduced and LREE‐depleted melt and was incorporated into an oxidized and enriched basalt. Vanadium and CaO in olivine appear to record the appearance of spinel and pyroxene on the liquidus of most of the shergottites. Most of the olivine shergottites represent basalts produced by melting of reduced (IW to IW + 1), depleted mantle sources. Olivine data indicate that many of the primary melts derived from this source had similar Ni, Co, and Mn. Shergottites such as Northwest Africa (NWA) 1110/1068 and perhaps Roberts Massif (RBT) 04261 that appear to be derived from more enriched sources have distinctly different olivine. In the case of NWA 1110/1068, the olivine data suggests that the enriched component was added to system prior to olivine crystallization.  相似文献   

20.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号