首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present data from recent high-energy-density laboratory experiments designed to explore the Rayleigh–Taylor instability under conditions relevant to supernovae. The Omega laser is used to create a blast wave structure that is similar to that of the explosion phase of a core-collapse supernova. An unstable interface is shocked and then decelerated by the planar blast wave, producing Rayleigh–Taylor growth. Recent experiments were performed using dual, side-on, x-ray radiography to observe a 3D “egg crate” mode and an imposed, longer-wavelength, sinusoidal mode as a seed perturbation. This paper explores the method of data analysis and accurately estimating the position of important features in the data.  相似文献   

2.
Our ongoing investigation of how ‘Pillars’ and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh–Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can test these results.  相似文献   

3.
The general principles of scaling are discussed, followed by a survey of the important dimensionless parameters of fluid dynamics including radiation and magnetic fields, and of non-LTE spectroscopy. The values of the parameters are reviewed for a variety of astronomical and laboratory environments. It is found that parameters involving transport coefficients – the fluid and magnetic Reynolds numbers – have enormous values for the astronomical problems that are not reached in the lab. The parameters that measure the importance of radiation are also scarcely reached in the lab. This also means that the lab environments are much closer to LTE than the majority of astronomical examples. Some of the astronomical environments are more magnetically dominated than anything in the lab. The conclusion is that a good astronomical environment for simulation in a given lab experiment can be found, but that the reverse is much more difficult. PACS NOS: 95.30.Jx, 95.30.Lz, 97.10.Ex, 97.10.Gz, 98.62.Mw The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

4.
The growth rate of the turbulent mixing zone, which develops from random perturbations under Rayleigh–Taylor instability, has been studied using the 3D version of the hydrodynamical code VULCAN. Previous studies show large differences between the α parameter of different codes. In its Eulerian mode VULCAN/3D employs Van–Leer scheme for the advection of all variables, and can also use interface tracking for multi-phase flows. Simulations using parallel version of VULCAN/3D give α of about 0.06, a value which agrees very well with experiments and some other simulations.  相似文献   

5.
We study analytically the Rayleigh–Taylor instability in expanding supernova gas shell. The instability appears at the inner shell surface accelerated by blowing pulsar wind. The most dangerous perturbations correspond to wavelengths comparable to the shell thickness. We analyze the fragility of the supernova remnant shell in function of the initial perturbation amplitude and the shell thickness.  相似文献   

6.
We present a comparison between a plasma-generated 'starting jet' experiment and an axisymmetric numerical simulation of the flow. The experimental flow and the numerical simulation give results that agree both qualitatively and quantitatively, showing that the complex vortical structures arising in the flow are surprisingly well reproduced by the numerical model. This result inspires confidence in the accuracy of astrophysical jet numerical simulations. Also, even though the Mach number of our laboratory jet is somewhat low ( M ∼0.5), the dimensionless parameters of this jet are not very far from those expected for Faranoff–Riley class I radio jets.  相似文献   

7.
A short summary of recent progress in measuring and understanding turbulence during magnetic reconnection in laboratory plasmas is given. Magnetic reconnection is considered as a primary process to dissipate magnetic energy in laboratory and astrophysical plasmas. A central question concerns why the observed reconnection rates are much faster than predictions made by classical theories, such as the Sweet–Parker model based on MHD with classical Spitzer resistivity. Often, the local resistivity is conjectured to be enhanced by turbulence to accelerate reconnection rates either in the context of the Sweet–Parker model or by facilitating setup of the Pestchek model. Measurements at a dedicated laboratory experiment, called MRX or Magnetic Reconnection Experiment, have indicated existence of strong electromagnetic turbulence in current sheets undergoing fast reconnection. The origin of the turbulence has been identified as right-hand polarized whistler waves, propagating obliquely to the reconnecting field, with a phase velocity comparable to the relative drift velocity. These waves are consistent with an obliquely propagating electromagnetic lower-hybrid drift instability driven by drift speeds large compared to the Alfven speed in high-beta plasmas. Interestingly, this instability may explain electromagnetic turbulence also observed in collisionless shocks, which are common in energetic astrophysical phenomena.  相似文献   

8.
The astrophysical jet experiment at Caltech generates a T=2–5 eV, n=1021–1022 m−3 plasma jet using coplanar disk electrodes linked by a poloidal magnetic field. A 100 kA current generates a toroidal magnetic field; the toroidal field pressure inflates the poloidal flux surface, magnetically driving the jet. The jet travels at up to 50 km/s for ∼20–25 cm before colliding with a cloud of initially neutral gas. We study the interaction of the jet and the cloud in analogy to an astrophysical jet impacting a molecular cloud. Diagnostics include magnetic probe arrays, a 12-channel spectroscopic system and a fast camera with optical filters. When a hydrogen plasma jet collides with an argon target cloud, magnetic measurements show the magnetic flux compressing as the plasma jet deforms. As the plasma jet front slows and the plasma piles up, the density of the frozen-in magnetic flux increases.  相似文献   

9.
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh–Taylor (RT), Richtmyer–Meshkov (RM), and Kelvin–Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen–helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. This paper represents a summary of recent results from a computational study of unstable systems driven by high Mach number shock and blast waves. For planar multimode systems, compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (ICs) by allowing for memory of the initial conditions to be retained in the mix-width at all times. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. Initial conditions predicted by some recent stellar calculations are incompatible with self-similarity.  相似文献   

10.
In experiments at the high-power Z-facility at Sandia National Laboratory in Albuquerque, New Mexico, we have been able to produce a low density photoionized laboratory plasma of Fe mixed with NaF. The conditions in the experiment allow a meaningful comparison with X-ray emission from astrophysical sources. The charge state distributions of Fe, Na and F are determined in this plasma using high resolution X-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter ξ = 20–25 erg cm s−1 under nearly steady-state conditions. First comparisons of the measured charge state distributions with X-ray photoionization models show reasonable agreement, although many questions remain.  相似文献   

11.
The results of a diffusive radiation transport experiment in a simple geometry are presented. The experiment depends primarily on two variables, the target density and the temperature drive, which are characterized well. The experiment is designed to verify and validate radiation transport in codes. The codes can then be used to model astrophysical systems. The results of the experiments are found to be in good agreement with simulation results.  相似文献   

12.
It has recently been realized that the Weibel instability plays a major role in the formation and dynamics of astrophysical shocks of gamma-ray bursts and supernovae. Thanks to technological advances in the recent years, experimental studies of the Weibel instability are now possible in laser-plasma interaction devices. We, thus, have a unique opportunity to model and study astrophysical conditions in laboratory experiments – a key goal of the Laboratory Astrophysics program. Here we briefly review the theory of strong non-magnetized collisionless GRB and SN shocks, emphasizing the crucial role of the Weibel instability and discuss the properties of radiation emitted by (isotropic) electrons moving through the Weibel-generated magnetic fields, which is referred to as the jitter radiation. We demonstrate that the jitter radiation field is anisotropic with respect to the direction of the Weibel current filaments and that its spectral and polarization characteristics are determined by microphysical plasma parameters. We stress that the spectral analysis can be used for accurate diagnostics of the plasma conditions in laboratory experiments and in astrophysical GRB and SN shocks.  相似文献   

13.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of Bohm potential on the head-on collision between two quantum electron-acoustic solitary waves (QEASWs) in two electron species quantum plasma have been investigated using the extended Poincaré–Lighthill–Kuo (PLK) method. The analytical phase shifts after the head-on collision of the two QEASWs are derived. Numerically, in two cases (i.e., the dense solid state plasma and the dense astrophysical environments), the results show that the cold electron-to-hot electron number density ratio, the quantum corrections of diffraction and Fermi temperature of hot electrons have strong effects on the nature of the phase shifts and the trajectories of two QEASWs after collision.  相似文献   

15.
I briefly describe a simple routine for emission-line profile fitting by Gaussian curves or Gauss–Hermite series. The profit (line-profile fitting) routine represent a new alternative for use in fits data cubes, as the ones from Integral Field Spectroscopy or Fabry–Pérot Interferometry, and may be useful to better study the emission-line flux distributions and gas kinematics in distinct astrophysical objects, such as the central regions of galaxies and star forming regions. The profit routine is written in IDL language and is available at .  相似文献   

16.
The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.  相似文献   

17.
Supernovae launch spherical shocks into the circumstellar medium (CSM). These shocks have high Mach numbers and may be radiative. We have created similar shocks in the laboratory by focusing laser pulses onto the tip of a solid pin surrounded by ambient gas; ablated material from the pin rapidly expands and launches a shock through the surrounding gas. Laser pulses were typically 5 ns in duration with ablative energies ranging from 1–150 J. Shocks in ambient gas pressures of ~1 kPa were observed at spatial scales of up to 5 cm using optical cameras with schlieren. Emission spectroscopy data were obtained to infer electron temperatures (< 10 eV). In this experiment we have observed a new phenomena; at the edge of the radiatively heated gas ahead of the shock, a second shock forms. The two expanding shocks are simultaneously visible for a time, until the original shock stalls from running into the heated gas. The second shock remains visible and continues to expand. A minimum condition for the formation of the second shock is that the original shock is super-critical, i.e., the temperature distribution ahead of the original shock has an inflexion point. In a non-radiative control experiment the second shock does not form. We hypothesize that a second shock could form in the astrophysical case, possibly in radiative supernova remnants such as SN1993J, or in shock-CSM interaction.  相似文献   

18.
We report first evidence for a new unidentified and variable MeV source, located near the galactic plane at (l,b)∼(284.5°, 2.5°). The source, GRO J1036-55, is found at a significance level of ∼5.6σ by COMPTEL in its 3–10 MeV band. The energy spectrum indicates a spectral maximum at 3–4.3 MeV with a steep slope at higher energies. Since the COMPTEL 3–4.3 MeV data contain contamination by an instrumental background line, we performed several consistency checks, which all are consistent with an astrophysical nature of this emission feature.  相似文献   

19.
Observations of light isotopes in cosmic rays provide valuable information on their origin and propagation in the Galaxy. Using the data collected by the AMS-01 experiment in the range ∼0.2–1.5 GeV nucleon−1, we compare the measurements on 1 H, 2 H, 3 He, and 4 He with calculations for interstellar propagation and solar modulation. These data are described well by a diffusive-reacceleration model with parameters that match the B/C ratio data, indicating that He and heavier nuclei such as C–N–O experience similar propagation histories. Close comparisons are made within the astrophysical constraints provided by the B/C ratio data and within the nuclear uncertainties arising from errors in the production cross section data. The astrophysical uncertainties are expected to be dramatically reduced by the data upcoming from AMS-02, so that the nuclear uncertainties will likely represent the most serious limitation on the reliability of the model predictions. On the other hand, we find that secondary-to-secondary ratios such as 2 H/3 He, 6 Li/7 Li or 10 B/11 B are barely sensitive to the key propagation parameters and can represent a useful diagnostic test for the consistency of the calculations.  相似文献   

20.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic FRW universe filled with barotropic fluid and dark energy. The scale factor is considered as a power law function of time which yields a constant deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The cosmic jerk parameter in our derived models is consistent with the recent data of astrophysical observations. It is concluded that in non-interacting case, all the three open, close and flat universes cross the phantom region whereas in interacting case only open and flat universes cross the phantom region. We find that during the evolution of the universe, the equation of state (EoS) for dark energy ω D changes from ω D >−1 to ω D <−1, which is consistent with recent observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号