首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
太阳过渡区爆发事件是过渡区重要的小尺度活动现象之一,常被过渡区的紫外和极紫外谱线观测到。典型的爆发事件的寿命为60~360 s,现象出现时谱线形状呈非高斯形,谱像两翼显示双向喷流结构,喷流速度大致在100 km·s~(-1),与色球局地阿尔芬速度相当。普遍认为其产生原因为小尺度快速磁重联。主要回顾了爆发事件的观测特征及其光谱学诊断方法,阐述了爆发事件的物理形成机制及与其他过渡区小尺度结构的联系,并讨论其在太阳风形成和日冕加热过程中对物质及能量输运的影响。最后对未来爆发事件的研究提出了展望。  相似文献   

2.
“TRACE”是“Transition Region and Coronal Explorer”的缩写,译成中文为“(太阳)过渡区和日冕探测者”。这颗人造卫星于1998年4月从美国Vandenberg空军基地发射升空。它是美国航空航天局发射的一个小探测器。TRACE的主要任务是:探测太阳大气的三维磁场结构;随太阳大气流动而引起的温度变化;随时间变化的日冕精细结构;日冕和过渡区的热拓朴(结构)。TRACE的空间分辨率为1弧秒,稳定性为0.1弧秒。自发射以来,它向地面接收站发回了大量珍贵有价值的太阳过渡区和日冕的图像信息。这些  相似文献   

3.
太阳过渡区的结构与特性   总被引:2,自引:2,他引:0  
太阳过渡区是位于色球与日冕之间的一个高度动态的等离子体区域.通过对太阳紫外光谱的研究发现,过渡区的主要结构是以磁场集中为特征的网络组织.首先回顾太阳过渡区的研究历史,接着从整体上介绍太阳过渡区的结构及观测特征,然后介绍过渡区各种结构和现象的主要模型和物理解释,并结合作者的认识进行必要的评论,最后对未来的研究方向提出看法.  相似文献   

4.
太阳高层大气日冕中主要包含电子和质子,它们具有极高的动能和温度,可以摆脱太阳引力的作用,像风一样吹向行星际空间,称为太阳风。太阳风物质(等离子体)的温度、密度及速度随时间和太阳经度不同而变化。太阳风的速度—般在350~750Km/sec之间。  相似文献   

5.
日冕物质抛射(Coronal Mass Ejection,CME)是一种强烈的太阳爆发现象,对空间天气和人类生活有巨大的影响,因此,日冕物质抛射检测对预报日冕物质抛射、保障人类的生产生活安全具有重要意义。现有的日冕物质抛射检测多采用人为定义特征和界定阈值等方法。由于人为定义特征不能准确表征日冕物质抛射且具有普适性的阈值难于选择,现有的方法对日冕物质抛射的检测效果有待提高。提出一种基于Faster R-CNN(Faster Region-based Convolutional Neural Networks)的日冕物质抛射检测算法。该方法首先结合CDAW(Coordinated Data Analysis Workshop Data Center),SEEDS(Solar Eruptive Even Detection System)和CACTus(Computer Aoded CME Tracking software package)3个著名的日冕物质抛射目录信息,人工标注了包含9113幅日冕图像的数据集,然后根据日冕物质抛射的图像特征较自然图像少、目标尺寸与自然图像有差异等特点,在特征提取和锚点选择方面对Faster R-CNN进行改进。以2007年6月的日冕物质抛射标注数据为测试集,本文算法检出了全部22个强日冕物质抛射事件和151个弱日冕物质抛射事件中的138个,对日冕物质抛射事件的中心角和角宽度等特征参数的检测误差分别在5°和10°以内。  相似文献   

6.
CME是(Coronal Mass Ejection)的缩写,意为日冕物质抛射。 太阳耀斑爆发已经是一个规模巨大的、剧烈的活动现象了。CME则是太阳日冕层中规模比太阳耀斑还大许多倍的活动现象,或者说是尺度最大、最壮观的爆发现象。从物理意义上讲,CME是从太阳向外喷射出的庞大等离子体和磁场结构,是日冕和太阳风  相似文献   

7.
日冕物质抛射是一种规模巨大、程度剧烈的爆发现象,是影响地球的主要太阳爆发活动。由于这种爆发现象对地球环境造成严重干扰,因此,日冕物质抛射的探测对预报灾害性空间天气具有重要意义。为了更清楚地梳理目前存在的日冕物质抛射检测方法,对典型的方法进行分析总结。首先,介绍日冕物质抛射及其特征;然后,从基于手工方法和自动检测方法两方面对日冕物质抛射检测进行概述和分析;最后,讨论目前算法存在的一些问题,进而提出未来的研究方向。  相似文献   

8.
本文研究了卡林顿自转周1591 - 1592 中冕流偏振亮度的变化。冕流带偏振亮度的分布是不均匀的,不均匀度为10 % - 50 % 。无日冕物质抛射影响存在时,沿冕流带冕流的分布可持续稳定存在近两个太阳自转周。当一个日冕物质抛射伴随冕流产生时,冕流的经向角大小若大于27°,可导致冕流尖角区顶部上升速度大于2km/s。  相似文献   

9.
太阳是与地球关系最为密切的天体.发生在日面上的剧烈爆发性活动可能对人类的生存环境产生巨大影响甚至是灾难性后果.包含太阳耀斑、暗条爆发和日冕物质抛射在内的太阳爆发活动是同一物理过程的不同表现形式,其能量来源于爆发前储存在日冕中的磁场自由能.因此,了解日冕磁场的3维结构是理解太阳爆发的触发机制以及活动区的稳定性等现象的前提.由于观测技术限制,目前尚无法对日冕磁场进行常规观测,因此发展了多种利用可常规观测的光球磁场来重建日冕磁场的方法.主要评述近10 yr来各种日冕磁场重建方法在研究太阳爆发活动中的应用.  相似文献   

10.
净梵 《天文爱好者》2010,(11):24-27
等离子体天体物理学是研究宇宙间最广泛存在的物质状态规律的科学。太阳最外层大气日冕的温度约达到一二百万度,高温下的太阳物质呈现高温等离子体状态;地球电离层是处于温度相对较低的等离子体状态。人造地球卫星以及太阳系深空探测表明,行星际空间并非真空,而是存在着来自日冕的连续微粒辐射——太阳风,它是因日冕膨胀而形成的连续向外发出的、伸向遥远的太阳系空间的等离子体流。等离子体物理过程在许多日地物理现象中,诸如太阳耀斑、黑子、日冕物质抛射、日珥、太阳风等研究中起重要作用,探索日地空间物理过程的规律是认识与之有关的空间现象的关键。  相似文献   

11.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

12.
尤建圻 《天文学进展》1996,14(2):94-104
对近年来的紫外空间观测仪器(包括在研项目)作了扼要介绍,并对一些关键问题如烃基污染致使仪器灵敏度迅速下降,镜面紫外反射率低下及改进,探测器换代的必要性和困难等作了评述,文中还介绍了目前取得的紫外观测结果对宁静太阳及太阳活动区物理中的一些基本问题如色球和日冕加热,太阳风的加速,色球和过渡区中的物质流以及耀斑触发和能量传输方面所提供的有价值的诊断信息。  相似文献   

13.
日冕物质抛射(CME)是巨大的、携带磁力线的泡沫状气体,在几个小时中被从太阳抛射出来的过程。日冕物质抛射伴随着大量带电粒子和辐射的释放,这些物质进入日地空间,对日地空间的磁场造成很大扰动;当它们传播到地球附近时,则严重影响地球的磁场,产生磁暴,也对空间和地面的电子设备造成干扰。日冕物质抛射在传播过程中如果发生偏转,将影响它对地有效性。因此研究日冕物质抛射的偏转特性,对预报日冕物质抛射对日地空间的影响具有重要意义。主要利用2007年10月8日STEREO卫星的日冕物质抛射观测资料,结合全日面线性无力场模型(Global Linear Force-Free Field,GLFFF)进行磁场外推,分析日冕物质抛射偏转与背景磁场能量密度分布之间的关系,并计算日冕物质抛射的运动轨迹。通过改变无力因子α,发现当α=0.15时,计算得到的日冕物质抛射运动轨迹与实际观测的日冕物质抛射运动轨迹拟合得最好。  相似文献   

14.
2012年1月23日,太阳上爆发了X射线级别为H9的大耀斑,同时产生了日冕物质抛射。此次太阳活动引起的太阳风暴向地球方向迅猛袭来,是自2005年以来最大的一次。射向地球的太阳风暴物质一般包含高能质子、电子、强电磁辐射和磁等离子体等。其中高能带电粒子的速度会非常大,会在一天之内来到地球,慢一些的带电粒子在随后几天内会接连袭击地球。  相似文献   

15.
太阳射电爆发的起因:耀斑或/和日冕物质抛射   总被引:2,自引:0,他引:2  
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程  相似文献   

16.
利用云南天文台声光频谱仪观测到的一次特殊的太阳射电米波爆发 ,与对应的光学活动及相关事件 ,我们探讨了 1 991年 6月 7日的日冕物质喷射过程  相似文献   

17.
太阳空间观测揭示出太阳的高能电子、高能质子发射以及γ射线爆发。证实了有关的太阳射电辐射理论、揭示出太阳耀斑中的核反应。日冕物质抛射和耀斑等离子体云的空间观测揭示出它们之间的区别和联系, 认识到耀斑的热区和冷区。太阳和日球磁场观测发展了磁流体动力学理论  相似文献   

18.
天空实验室观测期间,用白光日冕照相观测太阳日冕区,发现多数瞬变过程是以环状形式发生质量喷射.从太阳表面上二个太阳半径到六个太阳半径的观测范围内,测得环状瞬变过程前导边缘的运动是加速运动或者等速运动.这些日冕瞬变过程是细长的环,环的根部固定在太阳表面上.Dulk等人用白光观测和用无线电米波观测日冕瞬变过程时,比较了日冕环中的各种能量密度,得出结论:在日冕环中磁能密度大约是热能密度的十倍,磁能密度稍大于动能密度.Gergely等人也得出类似的结论.由此说明:在日冕环朝外运动时,磁场是控制日冕环的主要因素.  相似文献   

19.
利用最小二乘法拟合了1995年1月至2001年9月Wind卫星观测到的行星际磁通量绳。根据拟合所得磁通量绳的直径,分析了行星际磁通量绳在这段时间内的发生率随磁通量绳直径D变化的关系,发现磁通量绳的发生率P(D)随直径D的变化可近似以幂律形式表示为:P(D)≈64D-0.768。行星际磁通量绳的发生率相对其直径的幂律分布表明所有行星际磁通量绳很可能是同一类现象且有共同的源,即它们都是太阳上日冕物质抛射的行星际对应物,只不过小尺度的磁通量绳对应较小的日冕物质抛射。最后,对行星际磁通量绳、日冕物质抛射和太阳耀斑的可能关系做了讨论。  相似文献   

20.
用势场方法和格林函数解构造了三维日冕磁场.相关的边界条件是所观测的光球磁场以及光球上2.6个太阳半径的开放场(源表面).所用的光球数据来自高精度的MDI/SOHO观测(2″/像素,1桢/98min).这种外推方法可以用来分析太阳大事件在大尺度上的可能触发机制.作为一个例子,我们分析了活动区NOAA9077的外推日冕场,发现它们的形态与EIT/SOHO的日冕观测相符很好.结合全日面Hα演化,我们推测来自活动区9082的一次激波扰动应该是导致2000年7月14日大耀斑和日冕物质抛射的触发原因,该扰动沿着外推所得到的一个磁环系统直接传到大耀斑爆发位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号