首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Proton‐induced production cross sections of 129I from Te and Ba are presented. Earlier assumptions that Te is the most important target element in meteoroids are confirmed. Based on this data set and the experimental production rates of 129I from thick‐target experiments, the production of 129I in stony meteoroids is modeled using a GCR flux density of 4.06 cm?2 s?1. The results of this modeling must be considered preliminary because the contribution from neutron capture on 128Te needs further investigation. We obtained modeled production rates that agree with experimental results for samples from two medium‐sized meteorites (Abee and Knyahinya). However, we find that this model does not describe 41Ca in lunar rocks well and seems to overestimate 129I production in larger bodies, such as Allende. We present elemental production rates from Te and Ba based on our modeling as well as for a model that describes neutron capture products. For 129I analysis of Knyahinya, a novel method to separate Te and analysis using ICP‐MS was used, enabling the use of experimental elemental concentrations obtained from the same meteorite to calculate 129I production.  相似文献   

2.
Neutron capture effects in meteorites and lunar surface samples have been successfully used in the past to study exposure histories and shielding conditions. In recent years, however, it turned out that neutron capture effects produce a nuisance for some of the short‐lived radionuclide systems. The most prominent example is the 182Hf‐182W system in iron meteorites, for which neutron capture effects lower the 182W/184W ratio, thereby producing too old apparent ages. Here, we present a thorough study of neutron capture effects in iron meteorites, ordinary chondrites, and carbonaceous chondrites, whereas the focus is on iron meteorites. We study in detail the effects responsible for neutron production, neutron transport, and neutron slowing down and find that neutron capture in all studied meteorite types is not, as usually expected, exclusively via thermal neutrons. In contrast, most of the neutron capture in iron meteorites is in the epithermal energy range and there is a significant contribution from epithermal neutron capture even in stony meteorites. Using sophisticated particle spectra and evaluated cross section data files for neutron capture reactions we calculate the neutron capture effects for Sm, Gd, Cd, Pd, Pt, and Os isotopes, which all can serve as neutron‐dose proxies, either in stony or in iron meteorites. In addition, we model neutron capture effects in W and Ag isotopes. For W isotopes, the GCR‐induced shifts perfectly correlate with Os and Pt isotope shifts, which therefore can be used as neutron‐dose proxies and permit a reliable correction. We also found that GCR‐induced effects for the 107Pd‐107Ag system can be significant and need to be corrected, a result that is in contrast to earlier studies.  相似文献   

3.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the stone and metal fractions of 15 fragments of the Gold Basin L4 chondrite shower, as well as noble gases in 18 Gold Basin fragments. A comparison of 10Be, 26Al, and 41Ca concentrations with calculated production rates from two different models indicates that the Gold Basin samples came from depths of about 10 cm to more than 150 cm in an object with a radius of 3–5 m. As was predicted by recent model calculations, the noble gases show a reversal of the 22Ne/21Ne ratio at very high shielding. The 21Ne/10Be and 21Ne/26Al ratios in most samples are constant and correspond to a 4π exposure age of 18 ± 2 Myr. However, three Gold Basin samples show a 30–120% excess of 21Ne implying that they were previously exposed close to the surface of the parent body, whereas the other samples were buried several meters deeper. Concentrations of neutron‐capture 36Ar in most samples are consistent with measured concentrations of neutron‐capture 36Cl and an exposure age of 18 Myr. Large excesses of neutron‐capture 36Ar were found in those samples with an excess of 21Ne, providing additional evidence of a first‐stage exposure on the parent body. The excess of spallation‐produced 21Ne and neutron‐capture‐produced 36Ar in these samples indicate a first‐stage exposure of 35–150 Myr on the parent body. The radiogenic 4He and 40Ar concentrations indicate a major impact on the parent body between 300 and 400 Myr ago, which must have preceded the impacts that brought the Gold Basin meteoroid to the surface of the parent body and then expelled it from the parent body 18 Myr ago.  相似文献   

4.
Abstract– We report measurements of cosmogenic nuclides in up to 11 bulk samples from various depths in Norton County. The activities of 36Cl, 41Ca, 26Al, and 10Be were measured by accelerator mass spectrometry; the concentrations of the stable isotopes of He, Ne, Ar, and Sm were measured by electron and thermal ionization mass spectrometry, respectively. Production rates for the nuclides were modeled using the LAHET and the Monte Carlo N‐Particle codes. Assuming a one‐stage irradiation of a meteoroid with a pre‐atmospheric radius of approximately 50 cm, the model satisfactorily reproduces the depth profiles of 10Be, 26Al, and 53Mn (<6%) but overestimates the 41Ca concentrations by about 20%. 3He, 21Ne, and 26Al data give a one‐stage cosmic‐ray exposure (CRE) age of 115 Ma. Argon‐36 released at intermediate temperatures, 36Arn, is attributed to production by thermal neutrons. From the values of 36Arn, an assumed average Cl concentration of 4 ppm, and a CRE age of 115 Ma, we estimate thermal neutron fluences of 1–4 × 1016 neutrons cm?2. We infer comparable values from ε149Sm and ε150Sm. Values calculated from 41Ca and a CRE age of 115 Ma, 0.2–1.4 × 1016 neutrons cm?2, are lower by a factor of approximately 2.5, indicating that nearly half of the 149Sm captures occurred earlier. One possible irradiation history places the center of proto‐Norton County at a depth of 88 cm in a large body for 140 Ma prior to its liberation as a meteoroid with a radius of 50 cm and further CRE for 100 Ma.  相似文献   

5.
Abstract— Cosmic ray produced tracks, He and Ne isotopes and radionuclides have been studied in the recently fallen H5 chondrite Gujargaon. The results indicate an exposure age of about 7 Ma. The high track production rates of 0.25 to 0.69 × 106 cm?2 Ma?1 suggest that the Gujargaon meteoroid had a small size (Re = 9–10 cm) in space and suffered 1–3 cm ablation in the atmosphere. The conclusion about the meteoroid size is supported by the low activity of neutron capture isotope 60Co and high spallogenic 22Ne/21Ne ratio of about 1.25. The data on long lived isotopes 10Be, 53Mn and 26Al are used to derive production rates of these isotopes in a rock having a radius of 9 cm and the activity levels of the short lived isotopes 22Na and 54Mn are used to estimate the effect of modulation of galactic cosmic rays at the time of solar maximum of 1982.  相似文献   

6.
Abstract— We measured cosmogenic radionuclides (10Be, 26Al, and 36Cl) and noble gases (He, Ne, and Ar) in 10 specimens of the Mocs L6 chondrite to determine the exposure history and preatmospheric relationship among fragments from known locations in the strewn field. Cosmogenic noble gas contents alone are consistent with a simple irradiation exposure of 15.2 Ma. However, Mocs has very low 22Ne/21Ne ratios indicative of deep burial in a large meteoroid, but radionuclide levels at saturation values typical for much smaller meteoroids: this paradox suggests a possible complex exposure. For the latter case, we propose a two‐stage exposure history in which Mocs initially was deeply buried in a large object for 110 Ma, followed by exposure in a 65 cm object for 10.5 Ma. Relative shielding was inferred from the measured 22Ne/21Ne ratios assuming constant 22Ne/21Ne production for all samples during the first stage. These shielding levels, which are supported by estimates based on 36Cl production by neutron capture, indicate a possible relationship between depth of samples in the Mocs meteoroid and fall location in the strewn field.  相似文献   

7.
Abstract— We measured the concentrations of 10Be, 26Al, 36Cl, 41Ca and 14C in the metal and/or stone fractions of 27 Antarctic chondrites from Frontier Mountain (FRO), including two large H‐chondrite showers. To estimate the pre‐atmospheric size of the two showers, we determined the contribution of neutron‐capture produced 36Cl (half‐life = 3.01 times 105 years) and 41Ca (1.04 times 105 years) in the stone fraction. The measured activities of neutron‐capture 36Cl and 41Ca, as well as spallation produced 10Be and 26Al, were compared with Monte Carlo‐based model calculations. The largest shower, FRO 90174, includes eight fragments with an average terrestrial age of (100 ± 30) × 103 years; the neutron‐capture saturation activities extend to 27 dpm/kg stone for 36Cl and 19 dpm/kg stone for 41Ca. The concentrations of spallation produced 10Be, 26Al and 36Cl constrain the radius (R) to 80–100 cm, while the neutron‐capture 41Ca activities indicate that the samples originated from the outer 25 cm. With a pre‐atmospheric radius of 80–100 cm, FRO 90174 is among the largest of the Antarctic stony meteorites. The large pre‐atmospheric size supports our hypothesis that at least 50 of the ~150 classified H5/H6‐chondrites from the Frontier Mountain stranding area belong to this single fall; this hypothesis does not entirely account for the high H/L ratio at Frontier Mountain. The smaller shower, FRO 90001, includes four fragments with an average terrestrial age of (40 ± 10) × 103 years; they contain small contributions of neutron‐capture 36Cl, but no excess of 41Ca. FRO 90001 experienced a complex exposure history with high shielding conditions in the first stage (150 < R < 300 cm) and much lower shielding in the second stage (R < 30 cm), the latter starting ~1.0 million years (Ma) ago. Based on the measured 10Be/21Ne and 26Al/21Ne ratios, the cosmic‐ray exposure ages of the two showers are 7.2 ± 0.5 Ma for FRO 90174 and 8 ± 1 Ma for FRO 90001. These ages coincide with the well‐established H‐chondrite peak and corroborate the observation that the exposure age distribution of FRO H‐chondrites is similar to that of non‐Antarctic falls. In addition, we found that corrections for neutron‐capture 36Ar (from decay of 36Cl) result in concordant 21Ne and 38Ar exposure ages.  相似文献   

8.
Abstract— Here we present the first purely physical model for cosmogenic production rates in iron meteorites with radii from 5 cm to 120 cm and for the outermost 1.3 m of an object having a radius of 10 m. The calculations are based on our current best knowledge of the particle spectra and the cross sections for the relevant nuclear reactions. The model usually describes the production rates for cosmogenic radionuclides within their uncertainties; exceptions are 53Mn and 60Fe, possibly due to normalization problems. When an average S content of about 1 ± 0.5% is assumed for Grant and Carbo samples, which is consistent with our earlier study, the model predictions for 3He, 21Ne, and 38Ar are in agreement. For 4He the model has to be adjusted by 24%, possibly a result of our rather crude approximation for the primary galactic α particles. For reasons not yet understood the modeled 36Ar/38Ar ratio is about 30–40% higher than the ratio typically measured in iron meteorites. Currently, the only reasonable explanation for this discrepancy is the lack of experimentally determined neutron induced cross sections and therefore the uncertainties of the model itself. However, the new model predictions, though not yet perfect, enable determining the radius of the meteoroid, the exposure age, the sulphur content of the studied sample as well as the terrestrial residence time. The determination of exposure ages is of special interest because of the still open question whether the GCR was constant over long time scales. Therefore we will discuss in detail the differences between exposure ages determined with different cosmogenic nuclides. With the new model we can calculate exposure ages that are based on the production rates (cm3STP/(gMa)) of noble gases only. These exposure ages, referred to as noble gas exposure ages or simply 3,4He, 21Ne, or 36,38Ar ages, are calculated assuming the current GCR flux. Besides calculating noble gas ages we were also able to improve the 41K‐40K‐and the 36Cl‐36Ar dating methods with the new model. Note that we distinguish between 36Ar ages (calculated via 36Ar production rates only) and 36Cl‐36Ar ages. Exposure ages for Grant and Carbo, calculated with the revised 41K‐40K method, are 628 ± 30 Ma and 841 ± 19 Ma, respectively. For Grant this is equal to the ages obtained using 3He, 21Ne, and 38Ar but higher than the 36Ar‐ and 36Cl‐36Ar ages by ?30%. For Carbo the 41K‐40K age is ?40% lower than the ages obtained using 3He, 21Ne, and 38Ar but equal to the 36Ar age. These differences can either be explained by our still insufficient knowledge of the neutron‐induced cross sections or by a long‐term variation of the GCR.  相似文献   

9.
Abstract— ‐We demonstrate the presence of solar flare as well as neutron capture effects in the isotopic composition of rare gases in the Fermo regolith breccia acquired on its parent body based on the measurements of tracks, rare gases and radionuclides. The track density along a 3.2 cm long core decreases by a factor of about 6 and by more than a factor of 13 within the meteorite, indicating small (2–9 cm) and asymmetrical ablation. Rare gases show a large trapped component; the isotopic ratios, particularly 20Ne/22Ne ? 11 and 20Ne/36Ar = 10 are indicative of a solar component. The galactic cosmic‐ray exposure age is determined to be 8.8 Ma. Activities of a dozen radionuclides ranging in half‐life from 16 day 48V to 0.73 Ma 26Al are consistent with their expected production rates. Track, rare gas and radionuclide data show that the meteoroid was a small body (≤ 120 kg) and had a simple, one‐stage exposure history to cosmic rays in the interplanetary space. However, 82Kr and 128Xe show an excess due to neutron irradiation on the parent body of the meteorite. The presence of solar gases and the neutron capture effects indicate several stages of irradiation on the parent asteroid. The chemical composition of Fermo confirms that it belongs to the H group of ordinary chondrites with lithic clasts having varying compositions. δ15N is found to be 8.3 ± 1.2%0, close to the typical values observed in H chondrites.  相似文献   

10.
Abstract— We present a purely physical model for the calculation of depth‐dependent production rates in 2π exposure geometries by galactic cosmic rays (GCR). Besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on the integral number of GCR particles in the lunar orbit. We derived this value from adjusting modeled depth profiles for 10Be, 26Al, and 53Mn to measured data from the Apollo 15 drill core. The J0,GCR value of 4.54 cm?2 s?1 and the solar modulation parameter of M = 490 MeV determined this way for 1 AU is in reasonable agreement with the J0,GCR value derived recently for the meteoroid orbits (Leya et al., 2000b). We also show that the mean GCR proton spectrum in the lunar orbit has not changed substantially over about the last 10 Ma. For the major target elements we present depth‐dependent production rates for 10Be, 14C, 26Al, 36Cl and 53Mn, as well as for the rare gas isotopes 20,21,22Ne. In addition we present production rates for 36,38Ar from Fe and Ni. The new results are consistent with the data for stony meteoroids presented recently by our group (Leya et al., 2000b), but for the rare gas isotopes the new production rates sometimes differ significantly from earlier estimates. The applicability of the 22Ne/21Ne ratio as a shielding parameter is also discussed.  相似文献   

11.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

12.
Abstract— Thick spherical targets made of gabbro (R = 25 cm) and of steel (R = 10 cm) were irradiated isotropically with 1.6 GeV protons at the Saturne synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay in order to simulate the interaction in space of galactic cosmic‐ray (GCR) protons with stony and iron meteoroids. Proton fluences of 1.32 × 1014 cm?2 and 2.45 × 1014 cm?2 were received by the gabbro and iron sphere, respectively, which corresponds to cosmic‐ray exposure ages of about 1.6 and 3.0 Ma. Both artificial meteoroids contained large numbers of high‐purity target foils of up to 28 elements at different depths. In these individual target foils, elementary production rates of radionuclides and rare gas isotopes were measured by x‐ and γ‐spectrometry, by low‐level counting, accelerator mass spectrometry (AMS), and by conventional rare gas mass spectrometry. Also samples of the gabbro itself were analyzed. Up to now, for each of the experiments, ~500 target‐product combinations were investigated of which the results for radionuclides are presented here. The experimental production rates show a wide range of depth profiles reflecting the differences between low‐, medium‐, and high‐energy products. The influence of the stony and iron matrices on the production of secondary particles and on particle transport, in general, and consequently on the production rates is clearly exhibited by the phenomenology of the production rates as well as by a detailed theoretical analysis. Theoretical production rates were calculated in an a priori way by folding depth‐dependent spectra of primary and secondary protons and secondary neutrons calculated by Monte Carlo techniques with the excitation functions of the underlying nuclear reactions. Discrepancies of up to a factor of 2 between the experimental and a priori calculated depth profiles are attributed to the poor quality of the mostly theoretical neutron excitation functions. Improved neutron excitation functions were obtained by least‐squares deconvolution techniques from experimental thick‐target production rates of up to five thick‐target experiments in which isotropic irradiations were performed. A posteriori calculations using the adjusted neutron cross sections describe the measured depth profiles of all these simulation experiments within 9%. The thus validated model calculations provide a basis for reliable physical model calculations of the production rates of cosmogenic nuclides in stony and iron meteorites as well as in lunar samples and terrestrial materials.  相似文献   

13.
Abstract— A purely physical model is presented describing the depth- and size-dependence of the production of cosmogenic nuclides in meteoroids with radii up to 85 cm and in planetary surfaces by galactic cosmic ray protons. The model is based on Monte Carlo calculations of the intra- and internuclear cascades, by which depth- and size-dependent spectra of primary and secondary protons and of secondary neutrons are derived, and on experimental and theoretical thin-target cross sections of the underlying nuclear reactions. Model calculations are presented for production rates of 53Mn, 26Al, 22Ne, and 21Ne in H- and L-chondrites and of 53Mn and 26Al in lunar surface material and compared with experimental data. From the analysis of 53Mn and 26Al in the Apollo 15 lunar drill core and in the L-chondrite Knyahinya GCR p-spectra and integral particle fluxes at 1 A.U. and in the meteoroid orbits averaged over the last 10 Ma are derived. An analysis of experimental depth profiles in four H- and L-chondrites demonstrates, that the new model is well capable of describing depth- and size-dependences of production rates of cosmogenic nuclides. Moreover, it is possible to determine exposure ages for these meteorites on the basis of the theoretical 21Ne production rates. The model calculations further explain the depth- and size-dependence of 22Ne/21Ne-ratios and the dependences on these ratios of 21Ne, 26Al and 53Mn production rates. The future requirements for model calculations of cosmogenic nuclide production rates in extraterrestrial matter are outlined.  相似文献   

14.
Abstract— We present a purely physical model for the calculation of depth‐ and size‐dependent production rates of cosmogenic nuclides by galactic cosmic‐ray (GCR) particles. besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on only one free parameter—the integral number of gcr particles in the meteoroid orbits. We derived this value from analysis of radionuclide data in Knyahinya. We also show that the mean GCR proton spectrum in the meteoroid orbits has been constant over about the last 10 Ma. For the major target elements in stony meteoroids, we present depth‐ and size‐dependent production rates for 10Be, 14C, 26Al, 36Cl, and 53Mn as well as for the rare gas isotopes 3He, 20Ne, 21Ne, 22Ne, 36Ar, and 38Ar. The new data differ from semi‐empirical estimates by up to a factor of 4 but agree within ~20% with results obtained by earlier parametric or physical approaches. The depth and size dependence of the shielding parameter 22Ne/21Ne and the correlations 26Al vs. 10Be, 26Al vs. 53Mn, 10Be/21Ne vs. 22Ne/21Ne, and 36Ar vs. 36Cl for deciphering preatmospheric sizes, shielding depths, terrestrial residence times, and exposure histories are also discussed.  相似文献   

15.
Anin situ measurement of the lunar neutron density from 20 to 400 g cm?2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the10B (n,α)7Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative149Sm to157Gd capture rates reported previously (Russet al., 1972) imply that the true lunar157Gd capture rate is about one half of that calculated theoretically.  相似文献   

16.
Abstract— Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low‐ and high‐Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and Iherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2‐pyroxene assemblage. If the high‐phosphorus and low‐oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in marrian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26A1, and 36C1 with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80,82Kr and 128,131Xe) suggest that the QUE 94201 sample came from a depth >22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36C1 age of 0.29 ± 0.05 Myr and a 10Be exposure age of 2.6 ± 0.5 Myr in a 47π geometry, implying an ejection age of 2.9 ± 0.5 Myr.  相似文献   

17.
Abstract— Measurements of particle tracks, cosmogenic radionuclides, and rare gas isotopes in Mbale indicate that the meteoroid had a simple, one-stage exposure for 30.2 Ma in interplanetary space. On the basis of the measured track production rates and 60Co and 26Al activities, the meteoroid is estimated to be a sphere with a radius of ~36 cm. The activities of several cosmogenic radionuclides (i.e., 57Co, 54Mn, 22Na, 44Ti, and 26Al) in two fragments having different shielding, as estimated by their track density and 60Co activity, provide the depth variation in their production rates. Cobalt-57, 54Mn and 22Na activities agree with the production that is expected around the maximum of the solar cycle 22 as calculated from the Sunspot numbers. The U, Th-4He and K-40Ar ages are measured to be 0.54 Ga indicating a late thermal event which is in agreement with the thermal history of some other L group chondrites. The trapped N has δ15N of ?57 ± 4%o, which is much lighter than the average L-group chondrite value; this indicates the presence of an isotopically anomalous light N component.  相似文献   

18.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   

19.
Abstract— The isotopic compositions of Sm and Gd in seven lunar samples from the Apollo 15 deep drill core were determined to discuss the effects of neutron capture near the lunar surface. Large isotopic deviations of 150Sm/149Sm, 156Gd/155Gd, and 158Gd/157Gd derived from neutron capture effects were observed in all samples. Although neutron capture products in lunar samples were investigated extensively in the 1970s, our precise isotopic measurements resulted in several new findings. The neutron fluence in the Apollo 15 drill core is a function of depth with a symmetric peak at 190 g/cm2 depth from the surface, confirming the results of earlier investigations. Neutron fluence values calculated from the isotopic shifts by comparison to artificially irradiated standard reagents were (5.16–7.49) × 1016 n/cm2. These values are 1.3 to 1.4x larger than those previously reported. Variations of εSmGd with depth are interpreted as being due to variations in the neutron energy spectrum. Here εSm and εGd are defined as in previous studies of lunar neutron stratigraphy. Our data suggest that the neutron is more thermalized at the lower layers than it is at the upper layers. In addition to large isotopic shifts for 149Sm, 150Sm, 155Gd, 156Gd, 157Gd, and 158Gd, isotopic enrichments of 152Gd and 154Gd derived from neutron capture for 151Eu and 153Eu, respectively, were also observed in all samples.  相似文献   

20.
Abstract— We report here a chance find of a meteorite in the sand dunes of Ararki village of Hanumangarh district in the Rajasthan desert of northwest India. Chemical and petrological evidence in conjunction with isotopic composition of oxygen indicate that it is an L5 chondrite. The fayalite content of olivines is 26.3 mol%. The meteorite has some serpentinized olivines and 0.3% carbon having a terrestrial isotopic composition, indicating that it is moderately weathered. The absence of 22Na indicate that the meteorite fell to Earth more than a decade ago. The cosmic‐ray exposure age based on cosmogenic 21Ne is 7.2 Ma. Low density of cosmic‐ray heavy nuclei tracks, low 26A1 activity, the shielding parameter [(22Ne/21Ne)C = 1.094] and absence of neutron capture effects indicate cosmic‐ray shielding in a meteoroid having radius of about 16 cm, implying a meteoroid mass of about 60 kg and ablation of about 93%. The gas retention ages, based on U/Th‐4He and K‐40Ar are 1.1 and 0.58 Ga, respectively, suggesting a heating and degassing event late in the history of this meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号