首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The X1- and X2- or higher class ?ares in solar cycles 21, 22, and 23 from 1986 to 2008 have been analyzed statistically in this paper. It is found in the statistical study that the number of the X1-class ?ares accounted for 52.71% of total X- and higher class ?ares, while, the number of the X2- and higher class ?ares accounted for 47.29% of total X- and higher class ?ares. No matter whether the X1- and X2- or higher class ?ares, most of them occured in the descending phases of the solar cycles. Moreover, the weaker the intensity of the solar cycle, the higher the ratio of the ?ares occurred in the descending phase of the solar cycle, and the stronger the intensity of solar ?ares, the higher the ratio of the ?ares occurred in the descending phases of the solar cycles. In addition, the phase difference between the peak of the smoothed monthly mean number of sunspots and that of the X-class ?ares has been calculated, which shows that the smoothed monthly mean number of the X1-class ?ares had a very noticeable time advance of 1 month with respect to that of sunspots in the cycles 21 and 22, but there was a time lag of 13 months in the cycle 23, while, for the X2- and higher class ?ares, there was a time lag of 9 months in the cycle 21, but a one-month time advance existed in the cycle 22, and again a time lag of 32 months appeared in the cycle 23.  相似文献   

2.
We investigate the frequency of all (X-ray flare events higher than class B1.0), B, C, M and X-class flares, respectively, derived from the National Geophysical Data Center (NGDC) list of solar flares between May 1983 and September 2014, which corresponds to the two complete solar cycles (SCs) 22 and 23 as well as the rise and maximum phases of SC 24. Analysis shows that the temporal behavior for these various class flares is quite different. The main findings of this study, confirmed by using the Hinode flare catalog where possible, are as follows. (1) The B-class flares are in complete antiphase with all, C, M and X-class flares. (2) While, there is a small decreasing trend in the peak values of the smoothed monthly C-class flare numbers from SC 22 to 24, the occurrence rate of M and X-class flares dropped by almost half and two-thirds, respectively, during SC 23 and remained almost the same during SC 24. This class-dependent temporal behavior provides support for dynamo models that involve the coexistence of a deep global and a superficial local dynamo.  相似文献   

3.
Precursor techniques, in particular those using geomagnetic indices, often are used in the prediction of the maximum amplitude for a sunspot cycle. Here, the year 2008 is taken as being the sunspot minimum year for cycle 24. Based on the average aa index value for the year of the sunspot minimum and the preceding four years, we estimate the expected annual maximum amplitude for cycle 24 to be about 92.8±19.6 (1-sigma accuracy), indicating a somewhat weaker cycle 24 as compared to cycles 21 – 23. Presuming a smoothed monthly mean sunspot number minimum in August 2008, a smoothed monthly mean sunspot number maximum is expected about October 2012±4 months (1-sigma accuracy).  相似文献   

4.
We reported recently some rapid changes of sunspot structure in white-light(WL) associated with major flares.We extend the study to smaller events and present here results of a statistical study of this phenomenon.In total,we investigate 403 events from 1998 May 9 to 2004 July 17,including 40 X-class,174 M-class,and 189 C-class flares.By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer(TRACE),we find that segments in the outer sunspot structure decayed rapidly right after many flares;and that,on the other hand,the central part of sunspots near the flare-associated magnetic neutral line became darkened.These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions.Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares.For X-class flares,over 40% events show distinct sunspot structure change.For M-and C-class flares,this percentage drops to 17% and 10%,respectively.The results of this statistical study support our previously proposed reconnection picture,i.e.,the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.  相似文献   

5.
利用已知的22个完整太阳活动周平滑月平均黑子数的记录,对正在进行的太阳周发展趋势给出了预测方法,并应用于第23周,同时与其他预报方法的结果进行了比较。  相似文献   

6.
Based on analysis of the annual averaged relative sunspot number (ASN) during 1700–2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle (Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4, respectively since 1700); and 51.5-yr Cycle. From similarities, an extrapolation of forthcoming solar cycles is made, and found that the solar cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its apex around 2012–2014 in the vale between G3 and G4. Additionally, most Schwabe cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The comparisons between ASN and the annual flare numbers with different GOES classes (C-class, M-class, X-class, and super-flare, here super-flare is defined as ≥ X10.0) and the annal averaged radio flux at frequency of 2.84 GHz indicate that solar flares have a tendency: the more powerful of the flare, the later it takes place after the onset of the Schwabe cycle, and most powerful flares take place in the decay phase of Schwabe cycle. Some discussions on the origin of solar cycles are presented.  相似文献   

7.
我们对第12周至第22周的太阳黑子月平均面积数进行统计分析,并与相应的太阳黑子月平均数相比较,结果表明太阳黑子月平均面积数活动周与太阳黑子月平均数活动周有一定的关系。在多数情况下,太阳黑子出现最大值的时间与太阳黑子面积数出现最大值的时间上不一致;太阳黑子平滑月平均数活动周上升期与太阳黑子平滑月平均面积数上升期在大多数情况下不相同;太阳黑子平滑月平均数活动周平均效果的瓦德迈尔效应(Waldmeiereffect)一般要比太阳黑子平滑平均面积数的活动周明显;文中还对太阳黑子平滑月平均面积数活动周的特征进行了分析。  相似文献   

8.
We investigate the statistical distribution of X-class flares and their relationship with super active regions (SARs) during solar cycles 21–23. Analysis results show that X1.0–X1.9 flares accounted for 52.71 % of all X-class flares, with X2.0–X2.9 flares at 20.59 %, X3.0–X4.9 at 13.57 %, X5–X9.9 at 8.37 % and ≥X10 at 4.75 %. All X-class flares occurred around the solar maximum during solar cycle 22, while in solar cycle 23, X-class flares were scattered in distribution. In solar cycle 21, X-class flares were distributed neither in a concentrated manner like cycle 22 nor in a scattered manner as cycle 23. During solar cycles 21–23, 32.2 % of the X1.0–X1.9 flares, 31.9 % of the X2.0–X2.9 flares, 43.3 % of the X3.0–X4.9 flares, 81.08 % of the X5.0–X9.9 flares, and 95.2 % of the ≥X10 flares were produced by SARs.  相似文献   

9.
Ramesh  K.B. 《Solar physics》2000,197(2):421-424
An improved correlation between maximum sunspot number (SSNM) and the preceding minimum (SSNm) is reported when the monthly mean sunspot numbers are smoothed with a 13-month running window. This relation allows prediction of the amplitude of a sunspot cycle by making use of the sunspot data alone. The estimated smoothed maximum sunspot number (126±26) and time of maximum epoch (second half of 2000) of cycle 23 are in good agreement with the predictions made by some of the precursor methods.  相似文献   

10.
利用压强改正莫斯科中子监测值,对第23太阳活动周的未来发展趋势作了预测,推测第 23周太阳活动和第 22周相当,约在 2001年达到 151± 16的极大月平均黑子相对数.  相似文献   

11.
We propose a minimum level of the smoothed values for the solar constant during a period of low sunspot activity as a new additional criterion for determining the time of a minimum between solar cycles. An indicator for the time of a minimum between cycles is the time at which a minimum level in the average monthly values of the integral flux of solar radiation smoothed over thirteen months (when the last four values of the flux are greater than the previous minimum point) is achieved. We successfully tested the new criterion to determine the time of the previous minima between cycles 21 and 22, 22 and 23, and 23 and 24.  相似文献   

12.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

13.
Shastri  S. 《Solar physics》1998,180(1-2):499-504
A new technique based on multivariate analysis is described which allows for the prediction of the size or maximum amplitude of cycle 23. The technique uses the number of geomagnetic disturbances at selected times during the decline of cycle 22 (as precursors) to predict a maximum of about 152 (in terms of smoothed monthly mean sunspot numbers) for cycle 23. On the basis of this technique, hindcasts for cycles 17–22 are shown to agree with observed values within 5%.  相似文献   

14.
The NOAA active region (AR) 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares during its transit of the disk in late October 2009. The flares appear to show a departure from the well-known power law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power law distribution (Wheatland, Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power the missing large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of AR 11029 using data taken on 24 October by the SOLIS Vector SpectroMagnetograph (SOLIS/VSM) and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems, because the magnetogram data are inconsistent with a force-free model. We employ a recently developed “self-consistency” procedure which addresses this problem and accommodates uncertainties in the boundary data (Wheatland and Régnier, Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution, which provides a model for the coronal magnetic field of the active region. The free energy of the region was found to be ≈?4×1029?erg on 24 October and ≈?7×1031?erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from the observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked was sufficient to power M-class or X-class flares; hence, the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.  相似文献   

15.
I. Dorotovič 《Solar physics》1996,167(1-2):419-426
The correlation between the size of polar coronal holes and sunspot numbers has been investigated for the last five solar cycles. The area of polar coronal holes over the period from 1939 to 1993 was derived from ground-based observations of the green coronal line at 530.3 nm (Fe xiv). Correlation analysis revealed that there is no general shift in the maxima of the curves of these two solar indices. The analysis showed the same shift in months in cycles 21 and 22 when the best correlation between the indices is reached; the time shift found in cycle 20 is slightly different from that in cycle 18; in cycle 19, there is found a shift with a value between the values in cycles 18, 20 and 21, 22. The time between succesive peaks of smoothed polar hole size and smoothed sunspot number is different in each cycle.  相似文献   

16.
Guiqing  Zhang  Huaning  Wang 《Solar physics》1999,188(2):397-400
Instantaneous predictions of the maximum monthly smoothed sunspot number in solar cycle 23 have been made with a linear regressive model, which gives the predicted maximum value as a function of the smoothed sunspot numbers corresponding to a given month from the minimum in all preceding cycles. These predictions indicate that the intensity of solar activity in the current cycle will be at an average level.  相似文献   

17.
To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using cross-correlation analysis. The main results are as follows: (1) The flare index and sunspot number have synchronous phase for cycles 21 and 22 in the northern hemisphere and for cycle 20 in the southern hemisphere. (2) The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. (3) For the entire Sun, the flare index has a noticeable time lead for cycles 20 and 23, a time lag for cycle 21, and no time lag or time lead for cycle 22 with respect to sunspot number. (4) The solar radio flux has a time lag for cycles 22 and 23 and no time lag or time lead for cycles 20 and 21 with respect to sunspot number. (5) For the four cycles, the sunspot number and flare index in the northern hemisphere are all leading to the ones in the southern hemisphere. These results may be instructive to the physical processes of flare energy storage and dissipation.  相似文献   

18.
Sunspot activity is usually described by either sunspot numbers or sunspot areas. The smoothed monthly mean sunspot numbers (SNs) and the smoothed monthly mean areas (SAs) in the time interval from November 1874 to September 2007 are used to analyze their phase synchronization. Both the linear method (fast Fourier transform) and some nonlinear approaches (continuous wavelet transform, cross-wavelet transform, wavelet coherence, cross-recurrence plot, and line of synchronization) are utilized to show the phase relation between the two series. There is a high level of phase synchronization between SNs and SAs, but the phase synchronization is detected only in their low-frequency components, corresponding to time scales of about 7 to 12 years. Their high-frequency components show a noisy behavior with strong phase mixing. Coherent phase variables should exist only for a frequency band with periodicities around the dominating 11-year cycle for SNs and SAs. There are some small phase differences between them. SNs lag SAs during most of the considered time interval, and they are in general more asynchronous around the minimum and maximum times of a cycle than at the ascending and descending phases.  相似文献   

19.
Using the data from observations of polar faculae by the National Astronomical Observatory of Japan from July 1951 to December 1998, we investigate whether there is a time lag between high-latitude solar activity and low-latitude solar activity. The cross-correlation analysis of the smoothed monthly numbers of the polar faculae with the smoothed monthly sunspot numbers shows that, high-latitude solar activity should lead low-latitude solar activity in time phase. The periodic characteristics of both of them also indicate that high-latitude activity evidently leads low-latitude activity.  相似文献   

20.
利用国际GPS观测网(IGS)提供的多个台站的观测数据,分析了M级别以下的小、暗太阳耀斑对向阳面电离层TEC的影响.利用传统分析方法的结果表明,从单条视线(LOS)观测数据得到的电离层TEC及其时间变化率曲线来看,由于它们的波动水平和正常情况下的背景电离层变化相当,使此类小耀斑的信息完全淹没在背景噪声中,不能够显示和分辨出耀斑的发生.利用相干求和的数据处理方法,选用向阳面18个GPS台站的观测数据研究了一次C级SF耀斑引起的电离层TEC增加,结果发现,这种方法能有效地消除背景电离层变化噪声,电离层对耀斑的响应非常清楚和明显,这通常只能在X级别的大耀斑中看到.和GOES卫星X射线数据相比,电离层TEC变化的时间特征和耀斑爆发的开始、最大和结束时间均有很好的符合,其最大平均TEC增量在0.1TECU以下,和X级别的大耀斑相比有一个或多个量级上的差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号