首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
γ-ray is a unique probe for extreme events in the universe. Detecting the γ-ray provides an important opportunity to understand the composition of universe, the evolution of stars, the origin of cosmic rays, etc. γ-ray astronomy involves in various frontier scientific issues, and the observed energy spectrum spans over a wide range from a few hundreds of keV to a few hundreds of TeV. Different γ-ray telescopes are in need for different scientific goals and spectral bands. In this work, 5 kinds of space- and ground-based γ-ray observing techniques were summarized, including the Coded-aperture telescopes, Compton telescopes, Pair-production telescopes, Imaging Atmospheric Cherenkov Telescopes, and Extensive Air Shower Arrays. The progress in γ-ray astronomy in the past 70 years, motivated by the observation capability, was reviewed. Great achievements have been made in the high-energy domain and very-high-energy domain, while because of the limited missions conducted, as well as a lower sensitivity comparing with other domains, discoveries in low- and medium-energy are few, and due to the high observation difficulty, as well as the late start, relevant scientific yields in ultra- and extremely-high energy are limited. Moreover, the future planned missions and capabilities of the γ-ray telescopes and their possible scientific outputs were discussed. Among these missions, low- and medium-energy space telescopes e-ASTROGAM (enhanced-ASTROGAM), AMEGO (All-sky Medium Energy Gamma-ray Observatory), and very-high-energy ground-based arrays LHAASO (Large High Altitude Air Shower Observatory) and CTA (Cherenkov Telescope Array) greatly improve sensitivity than their corresponding last generation, thus expect very likely to further expand our knowledge on the γ-universe.  相似文献   

2.
Supernova Remnants (SNRs) are the most likely sources of the galactic cosmic rays up to energies of about 1015 eV/nuc. The large scale shock waves of SNRs are almost ideal sites to accelerate particles up to these highly non-thermal energies by a first order Fermi mechanism which operates through scattering of the particles at magnetic irregularities. In order to get an estimate on the total amount of the explosion energy E SNconverted into high energy particles the evolution of a SNR has to be followed up to the final merging with the interstellar medium. This can only be done by numerical simulations since the non-linear modifications of the shock wave due to particle acceleration as well as radiative cooling processes at later SNR stages have to be considered in such investigations. Based on a large sample of numerical evolution calculations performed for different ambient densities n ext, SN explosion energies, magnetic fields etc. we discuss the final ‘yields’ of cosmic rays at the final SNR stage where the Mach number of the shock waves drops below 2. At these times the cosmic rays start to diffuse out of the remnant. In the range of external densities of10-2n ext/[cm-3] ≤ 30 we find a the total acceleration efficiency of about 0.15 E SN with an increase up to 0.24 E SN at maximum for an external density of n ext = 10 cm-3. Since for the larger ambient densities radiative cooling can reduce significantly the total thermal energy content of the remnant dissipation of Alfvén waves can provide an important heating mechanism for the gas at these later stages. From the collisions of the cosmic rays with the thermal plasma neutral pions are generated which decay subsequently into observable γ-rays above 100 MeV. Hence, we calculate these γ-ray luminosities of SNRs and compare them with current upper limits of ground based γ-raytelescopes. The development of dense shells due to cooling of the thermal plasma increases the γ-ray luminosities and e.g. an external density of n ext = 10 cm-3 with E SN = 1051 erg can lead to a γ-ray flux above 10-6 ph cm-2 s-1 for a remnant located at a distance of 1 kpc. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100–200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.  相似文献   

5.
The investigation of supernova remnants (SNRs) across the electromagnetic spectrum from radio up to very high energy gamma-rays can serve as a test of the particle acceleration and touches on one of the unresolved problems of modern astrophysics, namely the origin of cosmic rays and the Galaxy's contribution to the overall cosmic ray spectrum. The multiwavelength observations of Cas A SNR demonstrated that structure and spectral features have clear signs of young SNRs and its overall properties make this object the best target to test a hypothesis of cosmic ray origin in SNRs. Studies of Cas A at very high energies by SHALON telescope showed the location of TeV gamma-ray emission region relative to the position of reveres shock. Also, the spectral energy distribution was obtained at high and very high energies. To describe the spectral and structural features of this SNR viewed in non-thermal emission, two approaches involving reverse and also both reverse and forward shocks to the mechanism of diffusive shock acceleration of cosmic rays in Cas A were applied. It is demonstrated that the observational properties of Cas A are well reproduced by the hadronic model with significant contribution of both the forward and reverse shocks in the generation of broadband emission. Calculation results suggest that the very high efficiency of particle acceleration in Cas A, which value is up to 25% of the supernova explosion energy with energy of accelerated particles not exceeding of eV. Whereas, the forward shock model predicts the spectral characteristics of the TeV-gamma-emission corresponding to ones detected at 800 GeV–40 TeV that are the evidence of acceleration of the hadronic cosmic rays in shells of SNRs up to eV  相似文献   

6.
The MACE (Major Atmospheric Cherenkov Experiment) is an upcoming Very High Energy (VHE) γ-ray telescope, based on imaging atmospheric Cherenkov technique, being installed at Hanle, a high altitude astronomical site in Ladakh, India. Here we present Monte Carlo simulation studies of trigger rates and threshold energies of MACE in the zenith angle range of 0°–60° for on-axis γ-ray coming from point source and various cosmic ray species. We have simulated the telescope’s response to γ-rays, proton, electron and alpha initiated atmospheric Extensive Air Showers (EAS) in the broad energy range of 5 GeV to 20 TeV. For γ-rays we consider power law and log parabolic spectra while other particles are simulated with their respective cosmic ray spectrum. Trigger rates and threshold energies are estimated for the trigger configuration of 4 Close Cluster Nearest Neighbour(CCNN) pixels as implemented in MACE hardware, in combination with single channel discriminator threshold ranging from 6–10 photo electrons (pe). We find that MACE can achieve the γ-ray trigger energy threshold of ∼ 17 GeV (4 CCNN, 9 pe) at 0° zenith angle for power law spectrum. The total trigger rate at 0° zenith is expected to be ∼650 Hz, with protons contributing ∼ 80% to it. For the zenith range of 0°-40° we find that the telescope can achieve γ-ray trigger threshold energies of ∼22 GeV at 20° zenith angle and ∼40 GeV at 40° zenith angle. Integral rates are also almost constant for this zenith angle range. At zenith angle of 60°, trigger energy threshold increases to ∼173 GeV and total integral rate falls down to ∼305 Hz.  相似文献   

7.
The technique of γ-ray astronomy at very high energies (VHE:>?100 GeV) with ground-based imaging atmospheric Cherenkov telescopes is described, the H.E.S.S. array in Namibia serving as example. Mainly a discussion of the physical principles of the atmospheric Cherenkov technique is given, emphasizing its rapid development during the last decade. The present status is illustrated by two examples: the spectral and morphological characterization in VHE γ-rays of a shell-type supernova remnant together with its theoretical interpretation, and the results of a survey of the Galactic Plane that shows a large variety of non-thermal sources. The final part is devoted to an overview of the ongoing and future instrumental developments.  相似文献   

8.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.  相似文献   

9.
The observational progress in the γ-ray astronomy in the last few years has led to the discovery of more than a thousand sources at GeV energies and more than a hundred sources at TeV energies. A few different classes of compact objects in the Galaxy have been established. They show many unexpected features at high energies the physics of which remains mainly unknown. At present it is clear that detailed investigation of these new phenomena can be performed only with the technical equipment which offer an order of magnitude better sensitivity, and a few times better energy, angular and time resolution in the broad energy range staring from a few tens of GeV up to a few hundreds TeV. Such facilities can be realized by the next generation of instruments such as the planned Cherenkov Telescope Array (CTA).The aim of this report is to summarize up to date observational results on the compact galactic sources in the GeV–TeV γ-ray energy range, discuss their theoretical implications, and indicate which hypothesis considered at present might be verified with the next generation of telescopes. We point out which of the observational features of the γ-ray sources are important to investigate with special care with the planned CTA in order to throw new light on physical processes involved. Their knowledge should finally allow us to answer the question on the origin of energetic particles in our Galaxy.  相似文献   

10.
11.
Long TeV γ-ray campaigns have been carried out to study the spectrum, variability and duty cycle of the BL Lac object Markarian 421. These campaigns have given some evidence of the presence of protons in the jet: (i) Its spectral energy distribution which shows two main peaks; one at low energies (∼1 keV) and the other at high energies (hundreds of GeV), has been described by using synchrotron proton blazar model. (ii) The study of the variability at GeV γ-rays and X-rays has indicated no significant correlation. (iii) TeV γ-ray detections without activity in X-rays, called “orphan flares” have been observed in this object.Recently, The Telescope Array Collaboration reported the arrival of 72 ultra-high-energy cosmic rays with some of them possibly related to the direction of Markarian 421. The IceCube Collaboration reported the detection of 37 extraterrestrial neutrinos in the TeV–PeV energy range collected during three consecutive years. In particular, no neutrino track events were associated with this source. In this paper, we consider the proton–photon interactions to correlate the TeV γ-ray fluxes reported by long campaigns with the neutrino and ultra-high-energy cosmic ray observations around this blazar. Considering the results reported by The IceCube and Telescope Array Collaborations, we found that only from ∼25% to 70% of TeV fluxes described with a power law function with exponential cutoff can come from the proton–photon interactions.  相似文献   

12.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

13.
Since supernova remnants (SNRs) are believed to be the primary sources of Galactic cosmic rays (CRs), their distribution in galaxies is an important basis for modelling and understanding the distribution of the CRs and their γ-ray spectrum. We analysed the radial surface density of X-ray and radio selected SNRs in the Large Magellanic Cloud (LMC) and M 33. Both in X-rays and in radio, the surface densities of the SNRs are in excellent agreement in both galaxies, showing an exponential decay in radius. The results were compared to the SNR distribution in the spiral galaxies M 31 and NGC 6946 as well. The radial scale length of the distribution is $\frac{1} {4} $ ? $\frac{1} {3} $ of the radius of the galaxies, fully consistent with values derived for the Milky Way, the LMC, and M 33. Therefore, not only the radio SNRs, but also the X-ray detected SNR sample can be interpreted to be representative for the CR sources within a galaxy.  相似文献   

14.
Supernova remnants accelerate particles up to energies of at least 100 TeV as established by observations in very-high-energy γ-ray astronomy. Molecular clouds in their vicinity provide an increased amount of target material for proton-proton interaction and subsequent neutral pion decay into γ-rays of accelerated hadrons escaping the remnant. Therefore, these molecular clouds are potential γ-ray sources. The γ-ray emission from these clouds provides a unique environment to derive information on the propagation of very-high-energy particles through the interstellar medium as well as on the acceleration of hadrons in supernova remnants. Current Imaging Atmospheric Cherenkov Telescope systems are suitable to explore a large parameter space of the propagation properties depending on the age of the supernova remnant and the distance between the remnant and the nearby molecular cloud.In this paper we present our strategy and results of a systematic search for γ-ray emitting molecular clouds near supernova remnants which are potentially detectable with current experiments in the TeV energy range and explore the prospects of future experiments.  相似文献   

15.
For the case of Tycho’s supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E sn=1.2×1051 erg of the SN explosion energy this also confirms our previous conclusion that a TeV γ-ray flux of (2–5)×10−13 erg/(cm2 s) is to be expected from Tycho’s SNR. Chandra measurements and the HEGRA upper limit of the TeV γ-ray flux together limit the source distance d to 3.3≤d≤4 kpc.  相似文献   

16.
The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy γ-rays which are attenuated en route to Earth by pair producing γγ interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the ∼10 GeV–10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and very high energy (VHE) γ-ray production models. Conversely, knowledge of the intrinsic γ-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of γ-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy γ-rays.  相似文献   

17.
Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed active galactic nuclei (AGN)-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point towards a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic ray pressure support, but none has built successful models in which cosmic ray heating is significant. Here, we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic rays, which are injected into the intra-cluster medium (ICM) through diffusion or the shredding of the bubbles by Rayleigh–Taylor or Kelvin–Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P c/ P g ≲ 0.1 and ∇ P c≲ 0.1ρ g , is well within observational bounds. Cosmic ray heating is a very attractive alternative to mechanical heating, and may become particularly compelling if Gamma-ray Large Array Space Telescope ( GLAST ) detects the γ-ray signature of cosmic rays in clusters.  相似文献   

18.
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class – SN 1006, RX J1713.72−3946, Vela Jr and others – that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50 per cent. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this 'twinkling' polarized X-ray emission of SNRs depend strongly on the magnetic field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic field characteristics and high-energy particle acceleration in SNRs.  相似文献   

19.
Non-thermal emission from old supernova remnants   总被引:1,自引:0,他引:1  
We study the non-thermal emission from old shell-type supernova remnants (SNRs) on the frame of a time-dependent model. In this model, the time-dependent non-thermal spectra of both primary electrons and protons as well as secondary electron/positron (e±) pairs can be calculated numerically by taking into account the evolution of the secondary e± pairs produced from proton–proton (p–p) interactions as accelerated protons collide with the ambient matter in an SNR. The multiwavelength photon spectrum for a given SNR can be produced through leptonic processes such as electron/positron synchrotron radiation, bremsstrahlung and inverse Compton scattering as well as hadronic interaction. Our results indicate that the non-thermal emission of the secondary e± pairs is becoming more and more prominent when the SNR ages in the radiative phase because the source of the primary electrons has been cut off and the electron synchrotron energy loss is significant for a radiative SNR, whereas the secondary e± pairs can be produced continuously for a long time in the phase due to the large energy-loss time for the p–p interaction. We apply the model to two old SNRs, G8.7−0.1 and G23.3−0.3, and the predicted results can explain the observed multiwavelength photon spectra for the two sources.  相似文献   

20.
The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray emitters, can be grouped in different subclasses depending on the nature of the binary components or the origin of the particle acceleration: the interaction of the winds of either a pulsar and a massive star or two massive stars; accretion onto a compact object and jet formation; and interaction of a relativistic outflow with the external medium. We evaluate the potentialities of an instrument like the Cherenkov telescope array (CTA) to study the non-thermal physics of gamma-ray binaries, which requires the observation of high-energy phenomena at different time and spatial scales. We analyze the capability of CTA, under different configurations, to probe the spectral, temporal and spatial behavior of gamma-ray binaries in the context of the known or expected physics of these sources. CTA will be able to probe with high spectral, temporal and spatial resolution the physical processes behind the gamma-ray emission in binaries, significantly increasing as well the number of known sources. This will allow the derivation of information on the particle acceleration and emission sites qualitatively better than what is currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号