首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
J.L. Elliot  J. Veverka  J. Goguen 《Icarus》1975,26(4):387-407
The diameters of Tethys, Dione, Rhea, Titan and Iapetus were determined from observations of their March 30, 1974, lunar occultations, made with the Mauna Kea 224 and 61 cm telescopes. Light curves were obtained simultaneously in four colors, and the difference between the time of occultation at the two telescopes provided a direct measurement of the slope of the lunar limb, found to be small in all cases. The satellite diameters were determined by least-squares fits of model occultation light curves to the data. In these fits the diameter and degree of limb darkening of the satellite are correlated variables, requiring the limb darkening to be specified before the diameter can be determined, or vice versa. However, for Titan the signal-to-noise ratio is sufficiently high to allow some assessment of the amount of limb darkening, which was found to be substantial. Titan's diameter must be at least 5800 km, much larger than the currently accepted value of 5000 km, making it the largest satellite in the solar system. This larger diameter implies a low mean density. For the other four satellites arguments are presented in favor of accepting the occultation diameters corresponding to limb darkened disks. Except for Titan, the lunar occultation diameters generally agree with previous diskmeter and radiometric determinations.  相似文献   

2.
Kai Multhaup  Tilman Spohn 《Icarus》2007,186(2):420-435
Thermal history models for the mid-sized saturnian satellites Mimas, Tethys, Dione, Iapetus, and Rhea have been calculated assuming stagnant lid convection in undifferentiated satellites and varying parameter values over broad ranges. Of all five satellites under consideration, only Dione, Rhea and Iapetus do show significant internal activities related to convective overturn for extended periods of time. The interiors of Mimas and Tethys do not convect or do so only for brief periods of time early in their thermal histories. Although we use lower densities than previous models, our calculations suggest higher interior temperatures but also thicker rigid shells above the convecting regions. Temperatures in the stagnant lid will allow melting of ammonia-dihydrate. Dione, Rhea and Iapetus may differentiate early and form early oceans, Iapetus only if ammonia is present. Mimas and Tethys with ammonia may differentiate if they accreted in an optically thick nebula with ambient temperatures around 250 K. Our models suggest that the outer shells of the satellites are largely primordial in composition even if the satellites differentiated. In these cases the deep interior may be layered with a pure ice shell underlain by an ammonia dihydrate layer and a rock core.  相似文献   

3.
Six-color photometric observations made during Saturn's 1972/73 opposition enable us to separate the solar phase and orbital phase contributions to the observed light variations of Iapetus, Titan, Rhea, Dione and Tethys. Titan shows no orbital variations, but has phase coefficients which range from negligible values in the infrared to 0.014mag/deg in the ultraviolet. Rhea has a bright leading side, a light curve amplitude of about 0.2mag, which increases toward short wavelengths, and surprisingly large phase coefficients, which increase from 0.025mag/deg in the red to 0.037mag/deg in the ultraviolet. Combined with other available information, this behavior suggests a very porous, texturally complex surface layer. Dione also has a leading side which is a few tenths of a magnitude brighter than the trailing side, but the light curve amplitude has little wavelength dependence and the phase coefficients are significantly smaller than those of Rhea, suggesting a less intricate surface texture. The leading side of Tethys is probably a few tenths of a magnitude brighter than the trailing side. Our Iapetus observations generally supplement the earlier work by Millis. The phase coefficients of the bright (trailing) side are typically ~0.03mag/deg and are not strongly wavelength dependent; the dark (leading) side coefficients are large (~0.05 mag/deg) and increase at shorter wavelengths, indicating a very porous and intricate surface texture. The light curve amplitude shows a slight increase at shorter wavelengths, suggesting an increasing contrast between the dark and bright materials. The spectral reflectance curves we derive for the satellites are in agreement with the spectrophotometry of McCord, Johnson, and Elias.  相似文献   

4.
Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.  相似文献   

5.
A photoelectric observation in the near infrared of the 10 February 1977 lunar occultation of Uranus is described and analyzed in terms of planetary radius, limb darkening, and polar brightening. Contact timings, corrected for lunar limb effects, indicate an equatorial radius of 25,700 ± 500km for the visible disk. A modified Minnaert function is used to model limb darkening and polar brightening. Least-squares fits to the observed light curve indicate that Uranus is slightly limb darkened in the passband of the observation (450 ÅA FWHM centered near 6900 ÅA) and that polar brightening is present.  相似文献   

6.
Bonnie J. Buratti 《Icarus》1984,59(3):392-405
Photometric analysis of Voyager images of the medium-sized icy satellites of Saturn shows that their surfaces exhibit a wide range of scattering properties. At low phase angles, Rhea and Dione closely follow lunar behavior with almost no limb darkening. Mimas, Tethys, and especially Enceladus shiw significant limb darkening at low phase angles, which suggests multiple scattering is important for their surfaces. A simple photometric function of the form I/F = f(α)0/(μ + μ0) + (1 ? A)μ0 has been fit to the observations. For normal reflectances <0.6, we find lunar-like scattering properties (A = 1). No satellite's surface can be described by Lambert's Law (A = 0). Dione exhibits the widest albedo variations (about 50%). A longitudinal dark stripe which represents a 15% decrease in albedo is situated near the center of the trailing side of Tethys. A correlation is found between the albedo and color of the satellites: the darker objects are redder. Similarly, darker areas of each satellite are redder. Spectral reflectances of Mimas and Enceladus can be derived for the first time. After the proper calibrations to the Voyager color images are made, it is found that both satellites have remarkably flat spectra into the ultraviolet.  相似文献   

7.
Near-infrared spectra, 0.65–2.5 μm, are presented for Tethys, Dione, Rhea, Iapetus, and Hyperion. Water ice absorptions at 2.0, 1.5, and 1.25 μm are seen in the spectra of all five objects (except the 1.25-μm band was not detected in spectra of Hyperion) and the weak 1.04-μm ice absorption is detected on the leading and trailing sides of Rhea, and the trailing side of Dione. Upper limits to the 1.04-μm ice band depth are <0.3% for the leading side of Dione; <0.7% for the leading side of Iapetus, and the trailing side of Tethys; <1% on the trailing side of Iapetus; and <5% on the leading side of Tethys. The leading-trailing side ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are determined for the amount of particulates, trapped gases, and amonium hydroxide on the surface. The surfaces of Saturn's satellites (except the dark side of Iapetus) are nearly pure water ice, with probably less than about 1 wt% particulate minerals. The ice could be clathrates with as much as a few weight percent trapped gases. The upper limit of amonium hydroxide depends on the spectral data precision and varies from ~ 1 wt% NH3 for the leading side of Rhea to ~ 10 wt% NH3 for Dione.  相似文献   

8.
Orbital phase curves are reported for Rhea (SV), Dione (SIV), and Tethys (SIII). Variations of 0.2 mag. and 0.8 mag. were found for Rhea and Dione respectively, while no variation of Tethys was detected. Some color variations are also reported.  相似文献   

9.
The sizes and shapes of six icy saturnian satellites have been measured from Cassini Imaging Science Subsystem (ISS) data, employing limb coordinates and stereogrammetric control points. Mimas, Enceladus, Tethys, Dione and Rhea are well described by triaxial ellipsoids; Iapetus is best represented by an oblate spheroid. All satellites appear to have approached relaxed, equilibrium shapes at some point in their evolution, but all support at least 300 m of global-wavelength topography. The shape of Enceladus is most consistent with a homogeneous interior. If Enceladus is differentiated, its shape and apparent relaxation require either lateral inhomogeneities in an icy mantle and/or an irregularly shaped core. Iapetus supports a fossil bulge of over 30 km, and provides a benchmark for impact modification of shapes after global relaxation. Satellites such as Mimas that have smoother limbs than Iapetus, and are expected to have higher impact rates, must have relaxed after the shape of Iapetus was frozen.  相似文献   

10.
Guy J. Consolmagno 《Icarus》1985,64(3):401-413
The faulting seen on the surfaces of Saturn's icy moons may have been caused either by external events, such as large impacts, or internal stresses caused by the expansion of the moons as long-lived radionuclides produced internal heating and phase changes. We estimate the stress as a function of radius expansion is σ = 44 (Δr/r) kbar. The extensional stress needed for fracture is probably something less than 40 bar so extensional fracture is likely to occur when Δr/r is greater than one part in a thousand. The radius change for these moons can be calculated analytically, given suitable assumptions; in addition, detailed time-dependent computer models of the thermal and physical evolution of Tethys, Dione, Rhea, and Iapetus were carried out. From these calculations we conclude that the most reasonable cause for rifting on Dione and Rhea is the refreezing of an ammonia-water eutectic melt inside these moons roughly two billion years after their formation, while the rift on Tethys was caused by a large impact, and little rifting should be expected on Iapetus.  相似文献   

11.
We present spectrophotometry in the 27–41 μm spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus, and Hyperion) and Jupiter (Europa, Ganymede, and Callisto). The 3.6-μm reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not all on Ganymede, Callisto, or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.  相似文献   

12.
Thermal histories of the small icy Saturnian satellites Mimas, Tethys, Dione, Rhea, and Iapetus are constructed by assuming that they formed as homogeneous ice-silicate mixtures. The models include effects of radiogenic and accretional heating, conductive and subsolidus convective heat transfer, and lithospheric growth. Accretional heating is unlikely to have melted the water ice in the interiors of these bodies and solid state creep of the predominately ice material precludes melting by radiogenic heating. Mimas is so small that its thermal evolution is essentially purely conductive; at present it is a cold, nearly isothermal body. Any subsolidus convection or thermal activity in Mimas would have been confined to a brief period in its early history and would have been due to a warm formation. The four largest satellites are big enough and contain sufficient heat-producing silicates that solid state convection beneath a rigid lithosphere is inevitable independent of initial conditions. Dione and Rhea have convective interiors for most of their thermal histories, while Tethys and Iapetus have mainly conductive thermal histories with early periods of convective 0activity. The thermal histories of the five satellites for the last 4 by are independent of initial conditions; at present they have cold, conductive interiors. The model thermal histories are qualitatively consistent with the appearances of these satellites: Mimas has an ancient heavily cratered surface, Tethys and probably Iapetus have both heavily cratered and more lightly cratered areas, and Dione and Rhea have extensively modified surfaces. Because of their similar sizes and densities, Mimas and Enceladus are expected to have similar surfaces and thermal histories, but instead Enceladus has the most modified surface of all the small icy Saturnian satellites. Our results suggest a heat source for Enceladus, in addition to radiogenic and accretional heating; tidal dissipation is a possibility. Because the water ice in these bodies does not melt, resurfacing must be accomplished by the melting of a low-melting-temperature minor component such as ammonia hydrate.  相似文献   

13.
Images of the icy Saturnian satellites Mimas, Enceladus, Tethys, Dione, Rhea, Iapetus, and Phoebe, derived by the Voyager and Cassini cameras are used to produce new local high-resolution image mosaics as well as global mosaics [http://ciclops.org, http://photojournal.jpl.nasa.gov]. These global mosaics are valuable both for scientific interpretation and for the planning of future flybys later in the ongoing Cassini orbital tour. Furthermore, these global mosaics can be extended to standard cartographic products.  相似文献   

14.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

15.
J. Veverka  J. Burt  J.L. Elliot  J. Goguen 《Icarus》1978,33(2):301-310
By considering both the orbital lightcurve of Iapetus and data obtained during the March 30, 1974, occultation of the satellite by the Moon, we obtain information about the brightness distribution on the bright face of Iapetus and derive an accurate value for the satellite's radius. From the observed orbital lightcurve we find that the trailing face of Iapetus must consist predominantly of a single bright material with an effective limb-darkening parameter of k = 0.62?0.120.10. Given this result the occultation observations imply a radius of 718?78+87 km. If the patchy albedo model proposed by Morrison et al. represents the surface of Iapetus accurately (as far as the relative albedo distribution is concerned) then the radius of Iapetus is 724 ± 60 km. Both estimates are consistent with the radiometric radius of 835 (+50, ?75) km derived by Morrison et al. Combining our results with the value of 0.60 ± 0.14 for the normal reflectance (in V) of the material at the center of the bright face derived by Elliot et al. we find that the normal reflectance of the dark side material is 0.11?0.03+0.04. These values are higher than the corresponding values of 0.35 and 0.05 quoted by Morrison et al.  相似文献   

16.
New global maps of the five inner midsize icy saturnian satellites, Mimas, Enceladus, Tethys, Dione, and Rhea, have been constructed in three colors (UV, Green and near-IR) at resolutions of 1 km/pixel. The maps reveal prominent global patterns common to several of these satellites but also three major color features unique to specific satellites or satellite subgroups. The most common features among the group are first-order global asymmetries in color properties. This pattern, expressed on Tethys, Dione and Rhea, takes the form of a ∼1.4-1.8 times enhancement in redness (expressed as IR/UV ratio) of the surface at the center of the trailing hemisphere of motion, and a similar though significantly weaker IR/UV enhancement at the center of the leading hemisphere. The peak in redness on the trailing hemisphere also corresponds to a known decrease in albedo. These double hemispheric asymmetries are attributable to plasma and E-ring grain bombardment on the trailing and leading hemispheres, respectively, for the outer three satellites Tethys, Dione and Rhea, whereas as E-ring bombardment may be focused on the trailing hemisphere of Mimas due to its orbital location interior to Enceladus. The maps also reveal three major deviations from these basic global patterns. We observe the previously known dark bluish leading hemisphere equatorial band on Tethys but have also discovered a similar band on Mimas. Similar in shape, both features match the surface patterns expected for irradiation of the surface by incident MeV electrons that drift in a direction opposite to the plasma flow. The global asymmetry on Enceladus is offset ∼40° to the west compared to the other satellites. We do not consider Enceladus in detail here, but the global distribution of bluish material can be shown to match the deposition pattern predicted for plume fallback onto the surface (Kempf, S., Beckmann, U., Schmidt, S. [2010]. Icarus 206, 446-457. doi:10.1016/j.icarus.2009.09.016). E-ring deposition on Enceladus thus appears to mask or prevent the formation of the lenses and hemispheric asymmetries we see on the other satellites. Finally, we observe a chain of discrete bluish splotches along the equator of Rhea. Unlike the equatorial bands of Tethys and Mimas, these splotches form a very narrow great circle ?10-km wide (north-to-south) and appear to be related to surface disruption, exposing fresh, bluish ice on older crater rims. This feature is unique to Rhea and may have formed by impact onto its surface of orbiting material.  相似文献   

17.
Ke Zhang  Francis Nimmo 《Icarus》2012,218(1):348-355
An inferred ancient episode of heating and deformation on Tethys has been attributed to its passage through a 3:2 resonance with Dione (Chen, E.M.A., Nimmo, F. [2008]. Geophys. Res. Lett. 35, 19203). The satellites encounter, and are trapped into, the e-Dione resonance before reaching the e-Tethys resonance, limiting the degree to which Tethys is tidally heated. However, for an initial Dione eccentricity >0.016, Tethys’ eccentricity becomes large enough to generate the inferred heat flow via tidal dissipation. While capture into the e-Dione resonance is easy, breaking the resonance (to allow Tethys to evolve to its current state) is very difficult. The resonance is stable even for large initial Dione eccentricities, and is not broken by perturbations from nearby resonances (e.g. the Rhea–Dione 5:3 resonance). Our preferred explanation is that the Tethyan impactor which formed the younger Odysseus impact basin also broke the 3:2 resonance. Simultaneously satisfying the observed basin size and the requirement to break the resonance requires a large (≈250 km diameter) and slow (≈0.5 km/s) impactor, possibly a saturnian satellite in a nearby crossing orbit with Tethys. Late-stage final impacts of this kind are a common feature of satellite formation models (Canup, R.M., Ward, W.R. [2006]. Nature 441, 834–839).  相似文献   

18.
Estimates of tidal damping times of the orbital eccentricities of Saturn's inner satellites place constraints on some satellite rigidities and dissipation functions Q. These constraints favor rock-like rather than ice-like properties for Mimas and probably Dione. Photometric and other observational data are consistent with relatively higher densities for these two satellites, but require lower densities for Tethys, Enceladus, and Rhea. This leads to a nonmonotonic density distribution for Saturn's inner satellites, apparently determined by different mass fractions of rocky materials. In spite of the consequences of tidal dissipation for the orbital eccentricity decay and implications for satellite compositions, tidal heating is not an important contributor to the thermal history of any Saturnian satellite.  相似文献   

19.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

20.
We present values from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) of four fundamental disk-integrated spectrophotometric properties (bolometric Bond albedo, solar phase curve, phase integral, and geometric albedo at 7-15 different wavelengths in the λ = 0.35-5.1 μm range) for five mid-sized saturnian icy satellites: Rhea, Dione, Tethys, Mimas, and Enceladus. These values, which include data from the period 2004-2008 and add to past VIMS phase curves, include opposition surge effects at down to fractions of a degree in solar phase angle for several moons and extend to over double the solar phase angle coverage of the Voyager mission. We also present new rotational light curves for Rhea and Dione at 7 near-infrared bands not previously available in ground-based or spacecraft studies. The bolometric Bond albedos we derive are as follows: 0.48 ± 0.09 (Rhea), 0.52 ± 0.08 (Dione), 0.61 ± 0.09 (Tethys), 0.67 ± 0.10 (Mimas), and 0.85 ± 0.11 (Enceladus). We also provide breakdowns of the major photometric quantities in both leading and trailing hemispheres. These refined parameters can be used to construct future bolometric Bond albedo maps that will contribute to surface composition identification studies, as well as models of volatile transport and sublimation. Through such applications, these data will help to determine the physical properties of surface particles, how the E-ring affects the inner saturnian moons, what is responsible for the dark albedo patterns seen on Tethys, and if these moons (e.g., Dione) are geologically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号