首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
To study the kinematics of O-B5 giant stars (luminosity class III), 290 non-Gould belt stars with proper motions taken from the Hipparcos catalogue are used, of which 107 have radial velocities taken from other sources. Semidefinite programming solves for the kinematical parameters and the coefficients of the velocity ellipsoid. The condition that both solutions must yield the same solar velocity is enforced. The results obtained are reasonable: solar velocity of 13.83 ± 0.17 km s−1; Oort's constants, in units of km s−1 kpc−1, A = 16.08 ± 0.72 and   B =−10.74 ± 0.65,  implying a rotational velocity of 228.0 ± 21.4 km s−1 if we take the distance to the Galactic Centre as 8.5 ± 1.1 kpc; velocity dispersions, in units of km s−1, of  σ x = 32.44 ± 5.04, σ y = 26.16 ± 2.75, σ z = 18.71 ± 2.39  with a vertex deviation of      相似文献   

2.
We determine the most likely values of the free parameters of an N -body model for the Galaxy developed by Fux via a discrete–discrete comparison with the positions on the sky and line-of-sight velocities of an unbiased, homogeneous sample of OH/IR stars. Via Monte Carlo simulation, we find the plausibility of the best-fitting models, as well as the errors on the determined values. The parameters that are constrained best by these projected data are the total mass of the model and the viewing angle of the central bar, although the distribution of the latter has multiple maxima. The other two free parameters, the size of the bar and the (azimuthal) velocity of the Sun, are less well-constrained. The best model has a viewing angle of ∼ 44°, a semimajor axis of 2.5 kpc (corotation radius 4.5 kpc, pattern speed 46 km s−1 kpc−1), a bar mass of 1.7×1010 M and a tangential velocity of the local standard of rest of 171 km s−1. We argue that the lower values that are commonly found from stellar data for the viewing angle (∼25°) arise when too few coordinates are available, when the longitude range is too narrow or when low latitudes are excluded from the fit. The new constraints on the viewing angle of the Galactic bar from stellar line-of-sight velocities decrease further the ability of the distribution of the bar to account for the observed microlensing optical depth toward Baade's window: our model reproduces only half the observed value. The signal of triaxiality diminishes quickly with increasing latitude, fading within approximately 1 scaleheight (≲3°). This suggests that Baade's window is not a very appropriate region in which to sample bar properties.  相似文献   

3.
We present radial velocities for 2045 stars in the Small Magellanic Cloud (SMC), obtained from the 2dF survey by Evans et al. The great majority of these stars are of OBA type, tracing the dynamics of the young stellar population. Dividing the sample into ad hoc 'bar' and 'wing' samples (north and south, respectively, of the line:  δ=−77°50'+[4α]'  , where α is the right ascension in minutes of time) we find that the velocities in the SMC bar show a gradient of 26.3 ± 1.6 km s−1 deg−1 at a position angle of 126°± 4°. The derived gradient in the bar is robust to the adopted line of demarcation between the two samples. The largest redshifts are found in the SMC wing, in which the velocity distribution appears distinct from that in the bar, most probably a consequence of the interaction between the Magellanic Clouds that is predicted to have occurred 0.2 Gyr ago. The mean velocity for all stars in the sample is +172.0 ± 0.2 km s−1 (redshifted by ∼20 km s−1 when compared to published results for older populations), with a velocity dispersion of 30 km s−1.  相似文献   

4.
It has been pointed out in the past that it is impossible to accelerate molecular material to velocities ≥ 25 km s−1 with gasdynamic shocks without dissociating the gas. Because of this, it has been argued that observations of molecular emission with radial velocities ∼ 20–100 km s−1 imply the presence of 'C-shocks' (which have much lower post-shock temperatures, and therefore do not dissociate the gas) and the existence of strong (∼ 10–100 μG) magnetic fields.   In this paper, we discuss an alternative mechanism for accelerating molecular material to high velocities: a high-velocity, low-density wind drives a non-dissociative shock (with shock velocity v cs ≤ 25 km s−1) into a high-density, molecular clump. Once this shock wave has gone through the clump, the molecular material is moving at a velocity ∼  v cs and has a gas pressure approximately equal to the ram pressure of the impinging wind. The compressed molecular clump can now be accelerated directly by the ram pressure of the wind (without the passage of further shocks through the molecular material), and will eventually move at the wind velocity.   This mechanism has been previously invoked to explain high-velocity molecular emission. However, numerical simulations have shown that a wind/clump interaction leads to the fragmentation of the clump before it can be accelerated to large velocities. In our numerical simulation (which includes an approximate treatment of the relevant microphysics) we find that the fragments that are produced are still largely molecular, and that they are rapidly accelerated to velocities comparable to the wind velocity. We therefore conclude that a wind/molecular clump interaction is indeed a valid mechanism for producing high-velocity molecular features.  相似文献   

5.
A two-dimensional velocity distribution in the UV plane has been obtained for stars in the solar neighbourhood, using Hipparcos astrometry for over 4000 'survey' stars with parallaxes greater than 10 mas and radial velocities found in the Hipparcos Input Catalogue. In addition to the already known grouping characteristics (field stars plus young moving groups), the velocity distribution seems to exhibit a more complex structure characterized by several longer branches running almost parallel to each other across the UV plane. By using the wavelet transform technique to analyse the distribution, the branches are visible at relatively high significance levels of 90 per cent or higher. They are roughly equidistant with a separation of about 15 km s−1 for early-type stars and about 20 km s−1 for late-type stars, creating an overall quasi-periodic structure which can also be detected by means of a two-dimensional Fourier transform. This branch-like velocity distribution might be caused by the Galactic spiral structure.  相似文献   

6.
We construct a new sample of ∼1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey (SDSS), selected using a reduced proper-motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catalogue of Bramich et al. Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range  30–50 km s−1  . This halo sample is one of the largest constructed to date and the disc contamination is at a level of ≲1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that  (σ r , σφ, σθ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1  . The stellar halo exhibits no net rotation, although the distribution of   v φ  shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like   r −3.75  .
Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localized in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al., but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC 5466, NGC 6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.  相似文献   

7.
8.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   

9.
We report on a very large set of simulations of collisions between two main-sequence (MS) stars. These computations were carried out with the smoothed particle hydrodynamics method. Realistic stellar structure models for evolved MS stars were used. In order to sample an extended domain of initial parameters space (masses of the stars, relative velocity and impact parameter), more than 14 000 simulations were carried out. We considered stellar masses ranging between 0.1 and  75 M  and relative velocities up to a few thousand km s−1. To limit the computational burden, a resolution of 1000–32 000 particles per star was used. The primary goal of this study was to build a complete data base from which the result of any collision can be interpolated. This allows us to incorporate the effects of stellar collisions with an unprecedented level of realism into dynamical simulations of galactic nuclei and other dense stellar clusters. We make the data describing the initial condition and outcome (mass and energy loss, angle of deflection) of all our simulations available on the Internet. We find that the outcome of collisions depends sensitively on the stellar structure and that, in most cases, using polytropic models is inappropriate. Published fitting formulae for the collision outcomes, established from a limited set of collisions, prove of limited use because they do not allow robust extrapolation to other stellar structures or relative velocities.  相似文献   

10.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

11.
We use proper motions and parallaxes from the new reduction of Hipparcos data and Geneva–Copenhagen radial velocities for a complete sample of  ∼15 000  main-sequence and subgiant stars, and new Padova isochrones to constrain the kinematics and star formation history of the solar neighbourhood. We rederive the solar motion and the structure of the local velocity ellipsoids. When the principal velocity dispersions are assumed to increase with time as   t β  , the index β is larger for  σ W W ≈ 0.45  ) than for  σ U U ≈ 0.31)  . For the three-dimensional velocity dispersion, we obtain  β= 0.35  . We exclude saturation of disc heating after  ∼3 Gyr  as proposed by Quillen & Garnett. Saturation after  ≳4 Gyr  combined with an abrupt increase in velocity dispersion for the oldest stars cannot be excluded. For all our models, the star formation rate (SFR) is declining, being a factor of 2–7 lower now than it was at the beginning. Models in which the SFR declines exponentially favour very high disc ages between 11.5 and 13 Gyr and exclude ages below  ∼10.5 Gyr  as they yield worse fits to the number density and velocity dispersion of red stars. Models in which the SFR is the sum of two declining exponentials representing the thin and thick discs favour ages between 10.5 and 12 Gyr with a lower limit of  ∼10.0 Gyr  . Although in our models the SFR peaked surprisingly early, the mean formation time of solar-neighbourhood stars is later than in ab initio models of galaxy formation, probably on account of weaknesses in such models.  相似文献   

12.
So far, six mechanisms have been proposed to account for the Galactic disc heating. Of these, the most important appear to be a combination of scattering of stars by molecular clouds and by spiral arms. We study a further mechanism, namely the repeated disc impact of the original Galactic globular cluster population up to the present. We find that globular clusters could have contributed at most a small fraction of the current vertical energy of the disc, as they could heat the whole disc to  σ z = 5.5 km s−1  (c.f. the observed 18 and 39 km s−1 for the thick and thin discs, respectively). We find that the rate of rise of disc heat (  α= 0.22  in  σ z ∼ t α  with t being time) is close to that found for scattering by molecular clouds.  相似文献   

13.
Paper XIII of this series presented radial velocities for 406 stars in certain of the Clube Selected Areas, a set of areas systematically arranged in Galactic coordinates. We now complete the survey by providing the radial velocities, mostly obtained at the European Southern Observatory (ESO), of 625 stars in the six southernmost Areas. Each star has been measured at least twice; the mean velocities have standard errors typically of 0.2–0.3 km s−1. Additional observations made from Haute-Provence of many of the stars that are observable from there have helped to identify, and in some instances to characterize, the ∼70 spectroscopic binaries discovered in this programme. The final results of the programme, complementing those given in table 3 of Paper XIII, are summarized in Table 12 , which presents the mean velocities and velocity dispersions in the six southern Areas. It is noted that the difference between Paper XIII and this one as regards the provenance of the radial velocities has led to a small difference in zero-points, which is discussed in Section 3 and needs to be taken into account in any analysis of the combined data.  

  Table 12.  Synopsis of radial-velocity results – mean velocities and velocity dispersions by Area.  相似文献   


14.
We present FOcal Reducer/low dispersion Spectrograph-1 spectra (from the European Southern Observatory's Very Large Telescope) of a sample of 34 faint  20.0 < g * < 21.1  A-type stars selected from the Sloan Digital Sky Survey Early Data Release, with the goal of measuring the velocity dispersion of blue horizontal branch (BHB) stars in the remote Galactic halo,   R ∼ 80 kpc  . We show that colour selection with  1.08 < u *− g * < 1.40  and  −0.2 < g *− r * < −0.04  minimizes contamination of the sample by less luminous blue stragglers. In classifying the stars we confine our attention to the 20 stars with spectra of signal-to-noise ratio >15 Å−1. Classification produces a sample of eight BHB stars at distances  65–102 kpc  from the Sun (mean 80 kpc), which represents the most distant sample of Galactic stars with measured radial velocities. The dispersion of the measured radial component of the velocity with respect to the centre of the Galaxy is  58 ± 15 km s−1  . This value is anomalously low in comparison with measured values for stars at smaller distances, as well as for satellites at similar distances. Seeking an explanation for the low measured velocity dispersion, further analysis reveals that six of the eight remote BHB stars are plausibly associated with a single orbit. Three previously known outer halo carbon stars also appear to belong to this stream. The velocity dispersion of all nine stars relative to the orbit is only  15 ± 4 km s−1  . Further observations along the orbit are required to trace the full extent of this structure on the sky.  相似文献   

15.
A new method to measure the epicycle frequency κ in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency κ. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure. The values of κ that we obtain provide constraints on the rotation velocity of the disc; in particular, V 0 is found to be  230 ± 15 km s−1  even if the short scale  ( R 0= 7.5 kpc)  of the Galaxy is adopted. The measured κ at the solar radius is  43 ± 5 km s−1 kpc −1  . The distribution of initial velocities of open clusters is discussed.  相似文献   

16.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

17.
We examine the scattering of single stars from an open star cluster. The probability of the capture of a star by a star cluster is dependent on the velocity and mass of the star, and the stars that are not captured experience a velocity change. For low-velocity stars there is an exponential decrease of the capture probability with the initial velocity, and the velocity change decreases almost linearly. For high-velocity stars there is a v −6 dependence for the capture probability, and a v −1 dependence for the velocity change. Analytical estimations, Monte Carlo and full N -body simulations are all in good agreement.  相似文献   

18.
We present high-resolution spectra (1.0 km s−1 FWHM) of the circumstellar Ca K line towards β Pictoris obtained on 1997 June 19 and 20. On the former date a strong absorption component was found at a heliocentric velocity of v helio = +8 km s−1, that is blueshifted by 14 km s−1 with respect to the main, 'stable', circumstellar component at v helio = +22 km s−1. To our knowledge, this is the first detection of a blueshifted Ca  ii component with a strength comparable to the more frequently observed redshifted events. On the following night a blueshifted component was still present, but its strength had decreased significantly; in addition, a strong redshifted component had appeared at v helio = +54 km s−1 which was absent on the previous night. The implications of these observations for the evaporating 'comet' model of spectral variations in the β Pictoris disc are discussed.  相似文献   

19.
We present and analyse the kinematics and orbits for a sample of 488 open clusters (OCs) in the Galaxy. The velocity ellipsoid for our present sample is derived as  (σ U , σ V , σ W ) = (28.7, 15.8, 11.0) km s−1  which represents a young thin-disc population. We also confirm that the velocity dispersions increase with the age of a cluster subsample. The orbits of OCs are calculated with three Galactic gravitational potential models. The errors of orbital parameters are also calculated considering the intrinsic variation of the orbital parameters and the effects of observational uncertainties. The observational uncertainties dominate the errors of derived orbital parameters. The vertical motions of clusters calculated using different Galactic disc models are rather different. The observed radial metallicity gradient of clusters is derived with a slope of   b =−0.070 ± 0.011   dex kpc−1. The radial metallicity gradient of clusters based on their apogalactic distances is also derived with a slope of   b =−0.082 ± 0.014   dex kpc−1. The distribution of derived orbital eccentricities for OCs is very similar to that derived for the field population of dwarfs and giants in the thin disc.  相似文献   

20.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号